Ming‐Liang Huang, Jing-jing Zhu, M. Chiaradia, R. Hu, Leiluo Xu, X. Bi
{"title":"斑岩型铜矿床磷灰石挥发性含量受深度相关流体溶出过程控制","authors":"Ming‐Liang Huang, Jing-jing Zhu, M. Chiaradia, R. Hu, Leiluo Xu, X. Bi","doi":"10.5382/econgeo.5000","DOIUrl":null,"url":null,"abstract":"\n Porphyry Cu deposits are formed by Cu- and volatile (e.g., Cl, S)-rich fluids exsolved from underlying magma reservoirs. Intuitively, higher magmatic Cl and S contents likely correspond to higher magma fertility. However, the Cl contents of syn-ore magmatic apatite, one of the major Cl-bearing mineral phases in magmas, are highly variable among deposits (from <0.1 to >2 wt %). These variations may be controlled by different timing of apatite crystallization relative to fluid saturation among deposits, but the causes of these different relative timings remain obscure. Here we compile existing chemical data of magmatic apatite and amphibole phenocrysts from 25 porphyry Cu deposits worldwide and use these data to calculate magmatic physical-chemical conditions, such as water contents and magma reservoir depths. We find that the porphyry Cu deposits associated with deeper magma reservoirs are characterized by systematically higher magmatic H2O contents and apatite Cl, but lower apatite F contents and F/Cl ratios compared to shallower deposits. These correlations are best explained by early fluid exsolution and Cl loss that predate apatite crystallization in shallower porphyry Cu systems, which leads to elevated apatite F/Cl ratios. This is supported by the common occurrence of primary fluid inclusions in apatite from shallower systems. Postsubduction porphyry Cu deposits are normally associated with lower apatite Cl contents and shallower magma reservoirs, which is attributed to their formation under relatively extensional tectonic regimes. Our results demonstrate that the magma reservoir depth exerts an important control on the timing of fluid exsolution and accompanying Cl loss. In contrast, relatively high and constant apatite S content among deposits is minimally affected by fluid exsolution, possibly due to buffering of early-saturated sulfate in oxidized and S-rich magmas, and therefore might be used as a better potential fertility indicator than Cl.","PeriodicalId":11469,"journal":{"name":"Economic Geology","volume":"516 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2023-03-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"APATITE VOLATILE CONTENTS OF PORPHYRY Cu DEPOSITS CONTROLLED BY DEPTH-RELATED FLUID EXSOLUTION PROCESSES\",\"authors\":\"Ming‐Liang Huang, Jing-jing Zhu, M. Chiaradia, R. Hu, Leiluo Xu, X. Bi\",\"doi\":\"10.5382/econgeo.5000\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Porphyry Cu deposits are formed by Cu- and volatile (e.g., Cl, S)-rich fluids exsolved from underlying magma reservoirs. Intuitively, higher magmatic Cl and S contents likely correspond to higher magma fertility. However, the Cl contents of syn-ore magmatic apatite, one of the major Cl-bearing mineral phases in magmas, are highly variable among deposits (from <0.1 to >2 wt %). These variations may be controlled by different timing of apatite crystallization relative to fluid saturation among deposits, but the causes of these different relative timings remain obscure. Here we compile existing chemical data of magmatic apatite and amphibole phenocrysts from 25 porphyry Cu deposits worldwide and use these data to calculate magmatic physical-chemical conditions, such as water contents and magma reservoir depths. We find that the porphyry Cu deposits associated with deeper magma reservoirs are characterized by systematically higher magmatic H2O contents and apatite Cl, but lower apatite F contents and F/Cl ratios compared to shallower deposits. These correlations are best explained by early fluid exsolution and Cl loss that predate apatite crystallization in shallower porphyry Cu systems, which leads to elevated apatite F/Cl ratios. This is supported by the common occurrence of primary fluid inclusions in apatite from shallower systems. Postsubduction porphyry Cu deposits are normally associated with lower apatite Cl contents and shallower magma reservoirs, which is attributed to their formation under relatively extensional tectonic regimes. Our results demonstrate that the magma reservoir depth exerts an important control on the timing of fluid exsolution and accompanying Cl loss. In contrast, relatively high and constant apatite S content among deposits is minimally affected by fluid exsolution, possibly due to buffering of early-saturated sulfate in oxidized and S-rich magmas, and therefore might be used as a better potential fertility indicator than Cl.\",\"PeriodicalId\":11469,\"journal\":{\"name\":\"Economic Geology\",\"volume\":\"516 1\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2023-03-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Economic Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5382/econgeo.5000\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Economic Geology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5382/econgeo.5000","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
APATITE VOLATILE CONTENTS OF PORPHYRY Cu DEPOSITS CONTROLLED BY DEPTH-RELATED FLUID EXSOLUTION PROCESSES
Porphyry Cu deposits are formed by Cu- and volatile (e.g., Cl, S)-rich fluids exsolved from underlying magma reservoirs. Intuitively, higher magmatic Cl and S contents likely correspond to higher magma fertility. However, the Cl contents of syn-ore magmatic apatite, one of the major Cl-bearing mineral phases in magmas, are highly variable among deposits (from <0.1 to >2 wt %). These variations may be controlled by different timing of apatite crystallization relative to fluid saturation among deposits, but the causes of these different relative timings remain obscure. Here we compile existing chemical data of magmatic apatite and amphibole phenocrysts from 25 porphyry Cu deposits worldwide and use these data to calculate magmatic physical-chemical conditions, such as water contents and magma reservoir depths. We find that the porphyry Cu deposits associated with deeper magma reservoirs are characterized by systematically higher magmatic H2O contents and apatite Cl, but lower apatite F contents and F/Cl ratios compared to shallower deposits. These correlations are best explained by early fluid exsolution and Cl loss that predate apatite crystallization in shallower porphyry Cu systems, which leads to elevated apatite F/Cl ratios. This is supported by the common occurrence of primary fluid inclusions in apatite from shallower systems. Postsubduction porphyry Cu deposits are normally associated with lower apatite Cl contents and shallower magma reservoirs, which is attributed to their formation under relatively extensional tectonic regimes. Our results demonstrate that the magma reservoir depth exerts an important control on the timing of fluid exsolution and accompanying Cl loss. In contrast, relatively high and constant apatite S content among deposits is minimally affected by fluid exsolution, possibly due to buffering of early-saturated sulfate in oxidized and S-rich magmas, and therefore might be used as a better potential fertility indicator than Cl.
期刊介绍:
The journal, now published semi-quarterly, was first published in 1905 by the Economic Geology Publishing Company (PUBCO), a not-for-profit company established for the purpose of publishing a periodical devoted to economic geology. On the founding of SEG in 1920, a cooperative arrangement between PUBCO and SEG made the journal the official organ of the Society, and PUBCO agreed to carry the Society''s name on the front cover under the heading "Bulletin of the Society of Economic Geologists". PUBCO and SEG continued to operate as cooperating but separate entities until 2001, when the Board of Directors of PUBCO and the Council of SEG, by unanimous consent, approved a formal agreement of merger. The former activities of the PUBCO Board of Directors are now carried out by a Publications Board, a new self-governing unit within SEG.