Anu Mohan, A. Udayakumar, M. Kamaraj, Ashutosh S. Gandhi
{"title":"高温和水蒸气对化学蒸汽渗透-SiCf/SiC 复合材料氧化行为的影响","authors":"Anu Mohan, A. Udayakumar, M. Kamaraj, Ashutosh S. Gandhi","doi":"10.1007/s11665-023-08693-9","DOIUrl":null,"url":null,"abstract":"<div><p>SiC<sub>f</sub>/SiC composites are replacing superalloy components in hot sections of gas turbines. The high-velocity combustion gases in gas turbine hot sections contain water vapor. The mechanism of oxidative water vapor attack on SiC is vastly different from that of oxidation in static dry air. Therefore, it is of paramount importance to study the oxidation of these composites in high-velocity combustion environments. This study focuses on the high-temperature oxidation behavior of SiC<sub>f</sub>/SiC composites with a BN interfacial coating in both static air and combustion environments. The composite was prepared by the chemical vapor infiltration process (CVI). To elucidate the impact of water vapor in a combustion environment, an oxyacetylene flame apparatus was used. Oxidation of the SiC<sub>f</sub>/SiC composite was investigated at 1200, 1300 and 1400 °C, for up to 100 h in static dry air, and for up to 24 h in a combustion environment. The microstructure evolution and recession of the composite under combustion environment were investigated by scanning electron microscopy. The oxidation kinetics of the SiC<sub>f</sub>/SiC composite showed a parabolic nature in static air; however, in the combustion environment the composite showed accelerated mass loss owing to the concurrent effects of oxidation and recession.</p></div>","PeriodicalId":644,"journal":{"name":"Journal of Materials Engineering and Performance","volume":"33 19","pages":"10104 - 10114"},"PeriodicalIF":2.2000,"publicationDate":"2023-09-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of High Temperature and Water Vapor on the Oxidation Behavior of Chemical Vapor Infiltration-SiCf/SiC Composite\",\"authors\":\"Anu Mohan, A. Udayakumar, M. Kamaraj, Ashutosh S. Gandhi\",\"doi\":\"10.1007/s11665-023-08693-9\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>SiC<sub>f</sub>/SiC composites are replacing superalloy components in hot sections of gas turbines. The high-velocity combustion gases in gas turbine hot sections contain water vapor. The mechanism of oxidative water vapor attack on SiC is vastly different from that of oxidation in static dry air. Therefore, it is of paramount importance to study the oxidation of these composites in high-velocity combustion environments. This study focuses on the high-temperature oxidation behavior of SiC<sub>f</sub>/SiC composites with a BN interfacial coating in both static air and combustion environments. The composite was prepared by the chemical vapor infiltration process (CVI). To elucidate the impact of water vapor in a combustion environment, an oxyacetylene flame apparatus was used. Oxidation of the SiC<sub>f</sub>/SiC composite was investigated at 1200, 1300 and 1400 °C, for up to 100 h in static dry air, and for up to 24 h in a combustion environment. The microstructure evolution and recession of the composite under combustion environment were investigated by scanning electron microscopy. The oxidation kinetics of the SiC<sub>f</sub>/SiC composite showed a parabolic nature in static air; however, in the combustion environment the composite showed accelerated mass loss owing to the concurrent effects of oxidation and recession.</p></div>\",\"PeriodicalId\":644,\"journal\":{\"name\":\"Journal of Materials Engineering and Performance\",\"volume\":\"33 19\",\"pages\":\"10104 - 10114\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2023-09-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Materials Engineering and Performance\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11665-023-08693-9\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Materials Engineering and Performance","FirstCategoryId":"88","ListUrlMain":"https://link.springer.com/article/10.1007/s11665-023-08693-9","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Impact of High Temperature and Water Vapor on the Oxidation Behavior of Chemical Vapor Infiltration-SiCf/SiC Composite
SiCf/SiC composites are replacing superalloy components in hot sections of gas turbines. The high-velocity combustion gases in gas turbine hot sections contain water vapor. The mechanism of oxidative water vapor attack on SiC is vastly different from that of oxidation in static dry air. Therefore, it is of paramount importance to study the oxidation of these composites in high-velocity combustion environments. This study focuses on the high-temperature oxidation behavior of SiCf/SiC composites with a BN interfacial coating in both static air and combustion environments. The composite was prepared by the chemical vapor infiltration process (CVI). To elucidate the impact of water vapor in a combustion environment, an oxyacetylene flame apparatus was used. Oxidation of the SiCf/SiC composite was investigated at 1200, 1300 and 1400 °C, for up to 100 h in static dry air, and for up to 24 h in a combustion environment. The microstructure evolution and recession of the composite under combustion environment were investigated by scanning electron microscopy. The oxidation kinetics of the SiCf/SiC composite showed a parabolic nature in static air; however, in the combustion environment the composite showed accelerated mass loss owing to the concurrent effects of oxidation and recession.
期刊介绍:
ASM International''s Journal of Materials Engineering and Performance focuses on solving day-to-day engineering challenges, particularly those involving components for larger systems. The journal presents a clear understanding of relationships between materials selection, processing, applications and performance.
The Journal of Materials Engineering covers all aspects of materials selection, design, processing, characterization and evaluation, including how to improve materials properties through processes and process control of casting, forming, heat treating, surface modification and coating, and fabrication.
Testing and characterization (including mechanical and physical tests, NDE, metallography, failure analysis, corrosion resistance, chemical analysis, surface characterization, and microanalysis of surfaces, features and fractures), and industrial performance measurement are also covered