制造原料用废弃纺织品的材料特性

Asad Bashir, Abigail R. Clarke-Sather, Tyler M. Poggogiale, Christopher L. Meehan
{"title":"制造原料用废弃纺织品的材料特性","authors":"Asad Bashir, Abigail R. Clarke-Sather, Tyler M. Poggogiale, Christopher L. Meehan","doi":"10.1115/msec2021-63645","DOIUrl":null,"url":null,"abstract":"\n Presently, many textiles are discarded, in a condition that would allow a significant percentage of them to be able to be completely reused or recycled. Recent consumption practices embodied by “fast fashion”, fast purchasing, and fast disposal of out of style clothing has increased the volume of discarded clothing, as the repurposing and/or recycling of discarded textile materials has not increased at a proportional rate. Consequently, discarded clothing may have nearly no wear and tear or extensive use before consumers choose to dispose of these textiles. Increasing the recovery of textiles from municipal solid waste streams involves understanding the material properties that discarded textiles possess. Measuring the material properties available from discarded textiles will allow for understanding whether these textiles can be reused. At the same time as disposal of textiles has increased, geotextile purchase and use has been increasing rapidly. In the current study, tensile strength (break force) and permittivity of discarded clothing samples made of cotton, polyester, and cotton-polyester blends were measured and compared with material properties that are commonly specified for geotextile applications. Average break force values measured for discarded cotton and polyester and average permittivity values measured for 50%/50% cotton-polyester blends and polyester are higher than what is commonly recommended for common geotextile applications. Polyester materials showed promise for drainage and erosion control applications that would be commonly serviced by geotextiles, as polyester samples yielded average break force and permittivity values are above typically recommended geotextile minimum values for these applications.","PeriodicalId":56519,"journal":{"name":"光:先进制造(英文)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Material Properties of Discarded Textiles for Manufacturing Feedstocks\",\"authors\":\"Asad Bashir, Abigail R. Clarke-Sather, Tyler M. Poggogiale, Christopher L. Meehan\",\"doi\":\"10.1115/msec2021-63645\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Presently, many textiles are discarded, in a condition that would allow a significant percentage of them to be able to be completely reused or recycled. Recent consumption practices embodied by “fast fashion”, fast purchasing, and fast disposal of out of style clothing has increased the volume of discarded clothing, as the repurposing and/or recycling of discarded textile materials has not increased at a proportional rate. Consequently, discarded clothing may have nearly no wear and tear or extensive use before consumers choose to dispose of these textiles. Increasing the recovery of textiles from municipal solid waste streams involves understanding the material properties that discarded textiles possess. Measuring the material properties available from discarded textiles will allow for understanding whether these textiles can be reused. At the same time as disposal of textiles has increased, geotextile purchase and use has been increasing rapidly. In the current study, tensile strength (break force) and permittivity of discarded clothing samples made of cotton, polyester, and cotton-polyester blends were measured and compared with material properties that are commonly specified for geotextile applications. Average break force values measured for discarded cotton and polyester and average permittivity values measured for 50%/50% cotton-polyester blends and polyester are higher than what is commonly recommended for common geotextile applications. Polyester materials showed promise for drainage and erosion control applications that would be commonly serviced by geotextiles, as polyester samples yielded average break force and permittivity values are above typically recommended geotextile minimum values for these applications.\",\"PeriodicalId\":56519,\"journal\":{\"name\":\"光:先进制造(英文)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"光:先进制造(英文)\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.1115/msec2021-63645\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"光:先进制造(英文)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1115/msec2021-63645","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目前,许多纺织品被丢弃,在这种情况下,它们中的很大一部分能够完全重复使用或回收。最近以“快时尚”、快速购买和快速处理过时服装为代表的消费行为增加了废弃服装的数量,因为废弃纺织材料的再利用和/或回收并没有按比例增加。因此,在消费者选择处理这些纺织品之前,被丢弃的衣服可能几乎没有磨损或广泛使用。从城市固体废物流中增加纺织品的回收涉及了解废弃纺织品所具有的材料特性。测量废弃纺织品的材料性能将有助于了解这些纺织品是否可以重复使用。在纺织品处理量增加的同时,土工布的购买量和使用量也在迅速增加。在目前的研究中,测量了棉、聚酯和棉-聚酯混纺制成的废弃衣服样品的拉伸强度(断裂力)和介电常数,并将其与土工布应用中通常指定的材料特性进行了比较。废弃棉和聚酯的平均断裂力值以及50%/50%棉-聚酯混纺和聚酯的平均介电常数值均高于普通土工织物应用的通常推荐值。聚酯材料在通常由土工布提供的排水和侵蚀控制应用中表现出了希望,因为聚酯样品产生的平均断裂力和介电常数值高于这些应用中通常推荐的土工布最小值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Material Properties of Discarded Textiles for Manufacturing Feedstocks
Presently, many textiles are discarded, in a condition that would allow a significant percentage of them to be able to be completely reused or recycled. Recent consumption practices embodied by “fast fashion”, fast purchasing, and fast disposal of out of style clothing has increased the volume of discarded clothing, as the repurposing and/or recycling of discarded textile materials has not increased at a proportional rate. Consequently, discarded clothing may have nearly no wear and tear or extensive use before consumers choose to dispose of these textiles. Increasing the recovery of textiles from municipal solid waste streams involves understanding the material properties that discarded textiles possess. Measuring the material properties available from discarded textiles will allow for understanding whether these textiles can be reused. At the same time as disposal of textiles has increased, geotextile purchase and use has been increasing rapidly. In the current study, tensile strength (break force) and permittivity of discarded clothing samples made of cotton, polyester, and cotton-polyester blends were measured and compared with material properties that are commonly specified for geotextile applications. Average break force values measured for discarded cotton and polyester and average permittivity values measured for 50%/50% cotton-polyester blends and polyester are higher than what is commonly recommended for common geotextile applications. Polyester materials showed promise for drainage and erosion control applications that would be commonly serviced by geotextiles, as polyester samples yielded average break force and permittivity values are above typically recommended geotextile minimum values for these applications.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.90
自引率
0.00%
发文量
0
期刊最新文献
Ultra-wideband Waveguide-coupled Photodiodes Heterogeneously Integrated on a Thin-film Lithium Niobate Platform Quantitative phase imaging (QPI) through random diffusers using a diffractive optical network Front Matter: Volume 12507 Research on key technology of compound polishing of off-axis parabolic mirror Precision polishing of the mandrel for x-ray grazing incidence mirrors in the Einstein probe
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1