S. Matveev, I. V. Chechet, A. S. Semenikhin, V. Y. Abrashkin, S. V. Lukachev, S. Matveev
{"title":"煤油及二元替代物在模型燃烧室燃烧的实验研究","authors":"S. Matveev, I. V. Chechet, A. S. Semenikhin, V. Y. Abrashkin, S. V. Lukachev, S. Matveev","doi":"10.1155/2017/3963075","DOIUrl":null,"url":null,"abstract":"The purpose of this paper is to conduct experimental research of hazardous substance emissions at the simulated combustion chamber output. The experiment was carried in a simulated combustion chamber. The combustion chamber included a burner device; a liquid fuel feed system; and a flame tube with two rows of mixing holes and one row of cooling holes. The combustion chamber operation mode was = 0.435, = 423 K, and the atmospheric pressure. The liquid fuel burn rate was 0.77 g/s. The pressure ratio in the combustion chamber remained constant at = 3%. Two types of fuel were used: aviation kerosene of Russia’s TS-1 brand and the fuel surrogate was n-decane mixture (C10H22) with benzene additions (C6H6). The benzene additions were 5% through 30% (n-decane/benzene: 95/5, 90/10, 85/15, 80/20, 75/25, and 70/30).","PeriodicalId":44364,"journal":{"name":"Journal of Combustion","volume":"13 2 1","pages":"1-6"},"PeriodicalIF":1.5000,"publicationDate":"2017-01-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"7","resultStr":"{\"title\":\"Experimental Study of the Combustion of Kerosene and Binary Surrogate in the Model Combustion Chamber\",\"authors\":\"S. Matveev, I. V. Chechet, A. S. Semenikhin, V. Y. Abrashkin, S. V. Lukachev, S. Matveev\",\"doi\":\"10.1155/2017/3963075\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The purpose of this paper is to conduct experimental research of hazardous substance emissions at the simulated combustion chamber output. The experiment was carried in a simulated combustion chamber. The combustion chamber included a burner device; a liquid fuel feed system; and a flame tube with two rows of mixing holes and one row of cooling holes. The combustion chamber operation mode was = 0.435, = 423 K, and the atmospheric pressure. The liquid fuel burn rate was 0.77 g/s. The pressure ratio in the combustion chamber remained constant at = 3%. Two types of fuel were used: aviation kerosene of Russia’s TS-1 brand and the fuel surrogate was n-decane mixture (C10H22) with benzene additions (C6H6). The benzene additions were 5% through 30% (n-decane/benzene: 95/5, 90/10, 85/15, 80/20, 75/25, and 70/30).\",\"PeriodicalId\":44364,\"journal\":{\"name\":\"Journal of Combustion\",\"volume\":\"13 2 1\",\"pages\":\"1-6\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2017-01-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"7\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combustion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2017/3963075\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combustion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2017/3963075","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
Experimental Study of the Combustion of Kerosene and Binary Surrogate in the Model Combustion Chamber
The purpose of this paper is to conduct experimental research of hazardous substance emissions at the simulated combustion chamber output. The experiment was carried in a simulated combustion chamber. The combustion chamber included a burner device; a liquid fuel feed system; and a flame tube with two rows of mixing holes and one row of cooling holes. The combustion chamber operation mode was = 0.435, = 423 K, and the atmospheric pressure. The liquid fuel burn rate was 0.77 g/s. The pressure ratio in the combustion chamber remained constant at = 3%. Two types of fuel were used: aviation kerosene of Russia’s TS-1 brand and the fuel surrogate was n-decane mixture (C10H22) with benzene additions (C6H6). The benzene additions were 5% through 30% (n-decane/benzene: 95/5, 90/10, 85/15, 80/20, 75/25, and 70/30).