使用深度学习检测泰国社交媒体信息中的抑郁症

Boriharn Kumnunt, O. Sornil
{"title":"使用深度学习检测泰国社交媒体信息中的抑郁症","authors":"Boriharn Kumnunt, O. Sornil","doi":"10.5220/0009970501110118","DOIUrl":null,"url":null,"abstract":": Depression problems can severely affect not only personal health, but also society. There is evidence that shows people who suffer from depression problems tend to express their feelings and seek help via online posts on online platforms. This study is conducted to apply Natural Language Processing (NLP) with messages associated with depression problems. Feature extractions, machine learning, and neural network models are applied to carry out the detection. The CNN-LSTM model, a unified model combining Convolutional Neural Networks (CNN) and Long Short-Term Memory Networks (LSTM), is used sequentially and in parallel as branches to compare the outcomes with baseline models. In addition, different types of activation functions are applied in the CNN layer to compare the results. In this study, the CNNLSTM models show improvement over the classical machine learning method. However, there is a slight improvement among the CNN-LSTM models. The three-branch CNN-LSTM model with the Rectified Linear Unit (ReLU) activation function is capable of achieving the F1-score of 83.1%.","PeriodicalId":88612,"journal":{"name":"News. Phi Delta Epsilon","volume":"307 1","pages":"111-118"},"PeriodicalIF":0.0000,"publicationDate":"2020-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Detection of Depression in Thai Social Media Messages using Deep Learning\",\"authors\":\"Boriharn Kumnunt, O. Sornil\",\"doi\":\"10.5220/0009970501110118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Depression problems can severely affect not only personal health, but also society. There is evidence that shows people who suffer from depression problems tend to express their feelings and seek help via online posts on online platforms. This study is conducted to apply Natural Language Processing (NLP) with messages associated with depression problems. Feature extractions, machine learning, and neural network models are applied to carry out the detection. The CNN-LSTM model, a unified model combining Convolutional Neural Networks (CNN) and Long Short-Term Memory Networks (LSTM), is used sequentially and in parallel as branches to compare the outcomes with baseline models. In addition, different types of activation functions are applied in the CNN layer to compare the results. In this study, the CNNLSTM models show improvement over the classical machine learning method. However, there is a slight improvement among the CNN-LSTM models. The three-branch CNN-LSTM model with the Rectified Linear Unit (ReLU) activation function is capable of achieving the F1-score of 83.1%.\",\"PeriodicalId\":88612,\"journal\":{\"name\":\"News. Phi Delta Epsilon\",\"volume\":\"307 1\",\"pages\":\"111-118\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"News. Phi Delta Epsilon\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0009970501110118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"News. Phi Delta Epsilon","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0009970501110118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

抑郁症不仅会严重影响个人健康,还会影响社会。有证据表明,患有抑郁症的人倾向于通过网络平台上的帖子来表达自己的感受并寻求帮助。本研究应用自然语言处理(NLP)处理与抑郁问题相关的信息。特征提取、机器学习和神经网络模型被用于进行检测。CNN-LSTM模型是卷积神经网络(CNN)和长短期记忆网络(LSTM)相结合的统一模型,以顺序和并行的方式作为分支,将结果与基线模型进行比较。此外,在CNN层中应用不同类型的激活函数来比较结果。在本研究中,CNNLSTM模型比经典机器学习方法有了改进。然而,CNN-LSTM模型之间有轻微的改进。具有整流线性单元(ReLU)激活函数的三分支CNN-LSTM模型能够达到83.1%的f1分数。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Detection of Depression in Thai Social Media Messages using Deep Learning
: Depression problems can severely affect not only personal health, but also society. There is evidence that shows people who suffer from depression problems tend to express their feelings and seek help via online posts on online platforms. This study is conducted to apply Natural Language Processing (NLP) with messages associated with depression problems. Feature extractions, machine learning, and neural network models are applied to carry out the detection. The CNN-LSTM model, a unified model combining Convolutional Neural Networks (CNN) and Long Short-Term Memory Networks (LSTM), is used sequentially and in parallel as branches to compare the outcomes with baseline models. In addition, different types of activation functions are applied in the CNN layer to compare the results. In this study, the CNNLSTM models show improvement over the classical machine learning method. However, there is a slight improvement among the CNN-LSTM models. The three-branch CNN-LSTM model with the Rectified Linear Unit (ReLU) activation function is capable of achieving the F1-score of 83.1%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GAN-Based LiDAR Intensity Simulation Improving Primate Sounds Classification using Binary Presorting for Deep Learning Towards exploring adversarial learning for anomaly detection in complex driving scenes A Study of Neural Collapse for Text Classification Using Artificial Intelligence to Reduce the Risk of Transfusion Hemolytic Reactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1