具有光学编码器位移反馈的大范围X-Y平行微运动系统

Zhiming Zhang, Guangbo Hao, P. Yan
{"title":"具有光学编码器位移反馈的大范围X-Y平行微运动系统","authors":"Zhiming Zhang, Guangbo Hao, P. Yan","doi":"10.1109/3M-NANO.2018.8552209","DOIUrl":null,"url":null,"abstract":"Linear optical encoders with a nano-resolution have been widely applied in various precision engineering fields for displacement feedback supporting micro/nano motions regulated by feedback control systems. However such sensing method is sensitive to assembly tolerance in the lateral motion (perpendicular to the primary direction), which limits its applications to single-axis motion systems or very small stroke multi-axis motion systems. In this paper, a large range X-Y parallel flexure-beam based micro-motion system is developed with an enhanced sensing framework employing two linear optical encoders to measure the two-axis large outputs. Meanwhile, both the open-loop and preliminary closed-loop experiments are conducted, demonstrating effectiveness of the proposed design and accurate sensing capability of the sensing framework.","PeriodicalId":6583,"journal":{"name":"2018 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","volume":"26 1","pages":"283-287"},"PeriodicalIF":0.0000,"publicationDate":"2018-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Large Range X-Y Parallel Micro-motion System with Optical Encoder Displacement Feedback\",\"authors\":\"Zhiming Zhang, Guangbo Hao, P. Yan\",\"doi\":\"10.1109/3M-NANO.2018.8552209\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Linear optical encoders with a nano-resolution have been widely applied in various precision engineering fields for displacement feedback supporting micro/nano motions regulated by feedback control systems. However such sensing method is sensitive to assembly tolerance in the lateral motion (perpendicular to the primary direction), which limits its applications to single-axis motion systems or very small stroke multi-axis motion systems. In this paper, a large range X-Y parallel flexure-beam based micro-motion system is developed with an enhanced sensing framework employing two linear optical encoders to measure the two-axis large outputs. Meanwhile, both the open-loop and preliminary closed-loop experiments are conducted, demonstrating effectiveness of the proposed design and accurate sensing capability of the sensing framework.\",\"PeriodicalId\":6583,\"journal\":{\"name\":\"2018 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)\",\"volume\":\"26 1\",\"pages\":\"283-287\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/3M-NANO.2018.8552209\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE International Conference on Manipulation, Manufacturing and Measurement on the Nanoscale (3M-NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/3M-NANO.2018.8552209","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

纳米分辨率的线性光学编码器以其位移反馈支持由反馈控制系统调节的微纳运动,已广泛应用于各种精密工程领域。然而,这种传感方法对横向运动(垂直于主方向)的装配公差敏感,这限制了它在单轴运动系统或非常小行程的多轴运动系统中的应用。本文开发了一种基于大范围X-Y平行挠曲梁的微运动系统,该系统采用增强传感框架,采用两个线性光学编码器测量两轴大输出。同时,进行了开环和初步闭环实验,验证了所提设计的有效性和传感框架的准确感知能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Large Range X-Y Parallel Micro-motion System with Optical Encoder Displacement Feedback
Linear optical encoders with a nano-resolution have been widely applied in various precision engineering fields for displacement feedback supporting micro/nano motions regulated by feedback control systems. However such sensing method is sensitive to assembly tolerance in the lateral motion (perpendicular to the primary direction), which limits its applications to single-axis motion systems or very small stroke multi-axis motion systems. In this paper, a large range X-Y parallel flexure-beam based micro-motion system is developed with an enhanced sensing framework employing two linear optical encoders to measure the two-axis large outputs. Meanwhile, both the open-loop and preliminary closed-loop experiments are conducted, demonstrating effectiveness of the proposed design and accurate sensing capability of the sensing framework.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Quality Factor Control in Laterally-Coupled Vertical Cavities 3D Printing of Micro Electrolyte Film by Using Micro-pen-writing Optimization of Phase Noise in Digital Holographic Microscopy A Method of Studying the Effect of Stress and Thermal-stress Coupling on the Thermal Conductivity of the Film Deposition and Alignment of Carbon Nanotubes with Dielectrophoresis for Fabrication of Carbon Nanotube Field-Effect Transistors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1