M. Schubert, P. Beu, F. Heinz, D. Amiri, Elke Gust, B. Steinhauser, S. Janz, F. Schindler
{"title":"太阳能电池用外延生长无角硅片的电性能限制","authors":"M. Schubert, P. Beu, F. Heinz, D. Amiri, Elke Gust, B. Steinhauser, S. Janz, F. Schindler","doi":"10.1109/PVSC.2018.8547796","DOIUrl":null,"url":null,"abstract":"In this work a quantitative approach to assess the specific material related efficiency limits of epitaxially grown silicon wafers is demonstrated. Based on experimental results of injection dependent carrier lifetime images on these wafers the absolute losses of identified defects, namely decorated stacking faults, defects from inhomogeneous processing and underlying homogeneously distributed recombination centers, have been quantified and compared. The losses from decorated stacking faults have been determined as a function of their lateral density. The obtained loss diagrams allow for systematic material optimization.","PeriodicalId":6558,"journal":{"name":"2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC)","volume":"86 1","pages":"2533-2536"},"PeriodicalIF":0.0000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Electrical Limitations in Epitaxially Grown Kerfless Silicon Wafers for Solar Cells\",\"authors\":\"M. Schubert, P. Beu, F. Heinz, D. Amiri, Elke Gust, B. Steinhauser, S. Janz, F. Schindler\",\"doi\":\"10.1109/PVSC.2018.8547796\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work a quantitative approach to assess the specific material related efficiency limits of epitaxially grown silicon wafers is demonstrated. Based on experimental results of injection dependent carrier lifetime images on these wafers the absolute losses of identified defects, namely decorated stacking faults, defects from inhomogeneous processing and underlying homogeneously distributed recombination centers, have been quantified and compared. The losses from decorated stacking faults have been determined as a function of their lateral density. The obtained loss diagrams allow for systematic material optimization.\",\"PeriodicalId\":6558,\"journal\":{\"name\":\"2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC)\",\"volume\":\"86 1\",\"pages\":\"2533-2536\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PVSC.2018.8547796\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 7th World Conference on Photovoltaic Energy Conversion (WCPEC) (A Joint Conference of 45th IEEE PVSC, 28th PVSEC & 34th EU PVSEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PVSC.2018.8547796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Electrical Limitations in Epitaxially Grown Kerfless Silicon Wafers for Solar Cells
In this work a quantitative approach to assess the specific material related efficiency limits of epitaxially grown silicon wafers is demonstrated. Based on experimental results of injection dependent carrier lifetime images on these wafers the absolute losses of identified defects, namely decorated stacking faults, defects from inhomogeneous processing and underlying homogeneously distributed recombination centers, have been quantified and compared. The losses from decorated stacking faults have been determined as a function of their lateral density. The obtained loss diagrams allow for systematic material optimization.