T. Jeong, S. Windu, Dong-Cheon Baek, Jinseok Kim, Kyuho Tak, Miji Lee, Hyuniun Choi, S. Pae, Jongwoo Park
{"title":"先进Cu/ULK BEOL工艺中短导金属线早期失效及其惠斯通电桥测试结构的EM表征","authors":"T. Jeong, S. Windu, Dong-Cheon Baek, Jinseok Kim, Kyuho Tak, Miji Lee, Hyuniun Choi, S. Pae, Jongwoo Park","doi":"10.1109/IITC.2013.6615569","DOIUrl":null,"url":null,"abstract":"Early failure of the short-lead metal line EM (Electromigration) is investigated. Applying Wheatstone bridge (WSB) test structure and 3-parameter lognormal distribution enables to reduce sample size and time-to-fail (TTF) variation governed by early fails causing a poor standard deviation, EM lifetime is accurately predicted and improved by ~280×. In particular, EM TTF at lower percentiles can be well represented by 3-parameter lognormal. With respect to physical aspects of void, EM behaviors of the short-lead and long-lead metal line are addressed based on experimental results compared with Monte-Carlo simulations to support the Blech's back-stress effects.","PeriodicalId":6377,"journal":{"name":"2013 IEEE International Interconnect Technology Conference - IITC","volume":"12 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Early failure of short-lead metal line and its EM characterization with Wheatstone bridge test structure in advanced Cu/ULK BEOL process\",\"authors\":\"T. Jeong, S. Windu, Dong-Cheon Baek, Jinseok Kim, Kyuho Tak, Miji Lee, Hyuniun Choi, S. Pae, Jongwoo Park\",\"doi\":\"10.1109/IITC.2013.6615569\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Early failure of the short-lead metal line EM (Electromigration) is investigated. Applying Wheatstone bridge (WSB) test structure and 3-parameter lognormal distribution enables to reduce sample size and time-to-fail (TTF) variation governed by early fails causing a poor standard deviation, EM lifetime is accurately predicted and improved by ~280×. In particular, EM TTF at lower percentiles can be well represented by 3-parameter lognormal. With respect to physical aspects of void, EM behaviors of the short-lead and long-lead metal line are addressed based on experimental results compared with Monte-Carlo simulations to support the Blech's back-stress effects.\",\"PeriodicalId\":6377,\"journal\":{\"name\":\"2013 IEEE International Interconnect Technology Conference - IITC\",\"volume\":\"12 1\",\"pages\":\"1-3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Interconnect Technology Conference - IITC\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IITC.2013.6615569\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Interconnect Technology Conference - IITC","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IITC.2013.6615569","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Early failure of short-lead metal line and its EM characterization with Wheatstone bridge test structure in advanced Cu/ULK BEOL process
Early failure of the short-lead metal line EM (Electromigration) is investigated. Applying Wheatstone bridge (WSB) test structure and 3-parameter lognormal distribution enables to reduce sample size and time-to-fail (TTF) variation governed by early fails causing a poor standard deviation, EM lifetime is accurately predicted and improved by ~280×. In particular, EM TTF at lower percentiles can be well represented by 3-parameter lognormal. With respect to physical aspects of void, EM behaviors of the short-lead and long-lead metal line are addressed based on experimental results compared with Monte-Carlo simulations to support the Blech's back-stress effects.