{"title":"非均匀功耗非均质3D集成电路的分层微流控冷却","authors":"Yue Zhang, Li Zheng, M. Bakir","doi":"10.1109/IITC.2013.6615561","DOIUrl":null,"url":null,"abstract":"Embedded microfluidic cooling is considered a promising solution for heat removal in 3D ICs. This paper presents tier-independent microfluidic cooling in a 2-tier chip thermal testbed. Each tier has 4 segmented heaters emulating a simplified multicore processor. Tier-independent cooling is shown to reduce the pumping power by 37.5% by preventing over-cooling when an operating temperature is specified. Thermal coupling for 3D chips with liquid cooling is also discussed.","PeriodicalId":6377,"journal":{"name":"2013 IEEE International Interconnect Technology Conference - IITC","volume":"45 1","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2013-06-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Tier-independent microfluidic cooling for heterogeneous 3D ICs with nonuniform power dissipation\",\"authors\":\"Yue Zhang, Li Zheng, M. Bakir\",\"doi\":\"10.1109/IITC.2013.6615561\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Embedded microfluidic cooling is considered a promising solution for heat removal in 3D ICs. This paper presents tier-independent microfluidic cooling in a 2-tier chip thermal testbed. Each tier has 4 segmented heaters emulating a simplified multicore processor. Tier-independent cooling is shown to reduce the pumping power by 37.5% by preventing over-cooling when an operating temperature is specified. Thermal coupling for 3D chips with liquid cooling is also discussed.\",\"PeriodicalId\":6377,\"journal\":{\"name\":\"2013 IEEE International Interconnect Technology Conference - IITC\",\"volume\":\"45 1\",\"pages\":\"1-3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-06-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Interconnect Technology Conference - IITC\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IITC.2013.6615561\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Interconnect Technology Conference - IITC","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IITC.2013.6615561","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Tier-independent microfluidic cooling for heterogeneous 3D ICs with nonuniform power dissipation
Embedded microfluidic cooling is considered a promising solution for heat removal in 3D ICs. This paper presents tier-independent microfluidic cooling in a 2-tier chip thermal testbed. Each tier has 4 segmented heaters emulating a simplified multicore processor. Tier-independent cooling is shown to reduce the pumping power by 37.5% by preventing over-cooling when an operating temperature is specified. Thermal coupling for 3D chips with liquid cooling is also discussed.