{"title":"滨崎堡的模型研究","authors":"Wei Ywin Teo, P. P. Ong","doi":"10.4043/31468-ms","DOIUrl":null,"url":null,"abstract":"\n Offshore wind farms are venturing into deeper water, where wind is steadier and stronger, to tap on more wind energy. The installation of wind turbines in deeper waters requires the use of a floating wind turbine. Designing the floating platforms is challenging as dynamic effects waves, wind, and currents, have to be considered. Hydrodynamic behaviours can only be modelled accurately in time domain analysis, which requires an immense computational effort, when several load cases are taken into consideration. A more efficient approach is to first conduct stability analysis to identify the modal frequencies, and subsequently carry out time domain analysis using those modal frequencies.\n This paper describes a static study and time domain analysis on an innovative offshore spar turbine with hulls. Ansys Aqwa, a finite-element software, is used to study a model proposed by Mitsubishi Heavy Industries. The key objective is to explore a more cost-effective offshore platform by investigating the relationship between the geometry of hulls and the responses of the platform.","PeriodicalId":11081,"journal":{"name":"Day 2 Wed, March 23, 2022","volume":"99 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Modelling Study of Hamakaze Fowt\",\"authors\":\"Wei Ywin Teo, P. P. Ong\",\"doi\":\"10.4043/31468-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Offshore wind farms are venturing into deeper water, where wind is steadier and stronger, to tap on more wind energy. The installation of wind turbines in deeper waters requires the use of a floating wind turbine. Designing the floating platforms is challenging as dynamic effects waves, wind, and currents, have to be considered. Hydrodynamic behaviours can only be modelled accurately in time domain analysis, which requires an immense computational effort, when several load cases are taken into consideration. A more efficient approach is to first conduct stability analysis to identify the modal frequencies, and subsequently carry out time domain analysis using those modal frequencies.\\n This paper describes a static study and time domain analysis on an innovative offshore spar turbine with hulls. Ansys Aqwa, a finite-element software, is used to study a model proposed by Mitsubishi Heavy Industries. The key objective is to explore a more cost-effective offshore platform by investigating the relationship between the geometry of hulls and the responses of the platform.\",\"PeriodicalId\":11081,\"journal\":{\"name\":\"Day 2 Wed, March 23, 2022\",\"volume\":\"99 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 2 Wed, March 23, 2022\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4043/31468-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 2 Wed, March 23, 2022","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4043/31468-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Offshore wind farms are venturing into deeper water, where wind is steadier and stronger, to tap on more wind energy. The installation of wind turbines in deeper waters requires the use of a floating wind turbine. Designing the floating platforms is challenging as dynamic effects waves, wind, and currents, have to be considered. Hydrodynamic behaviours can only be modelled accurately in time domain analysis, which requires an immense computational effort, when several load cases are taken into consideration. A more efficient approach is to first conduct stability analysis to identify the modal frequencies, and subsequently carry out time domain analysis using those modal frequencies.
This paper describes a static study and time domain analysis on an innovative offshore spar turbine with hulls. Ansys Aqwa, a finite-element software, is used to study a model proposed by Mitsubishi Heavy Industries. The key objective is to explore a more cost-effective offshore platform by investigating the relationship between the geometry of hulls and the responses of the platform.