故障电流下真空触点闭合对击前起弧时间、触点焊接及场增强系数的影响

P. Slade, R. Kirkland, E. Taylor
{"title":"故障电流下真空触点闭合对击前起弧时间、触点焊接及场增强系数的影响","authors":"P. Slade, R. Kirkland, E. Taylor","doi":"10.1109/HOLM.2007.4318191","DOIUrl":null,"url":null,"abstract":"Experiments were performed with vacuum interrupters containing Cu-Cr (25 wt%) and W-Cu (10 wt%) contacts. The vacuum interrupters were placed in a spring mechanism, which was placed in a tuned, capacitor bank electrical test circuit. The capacitor bank was charged to 25 kV, which allowed a symmetrical fault current of 50 kA (peak) at 30 Hz. As the vacuum interrupter's contacts closed a prestrike arc occurred when the contact spacing was small enough. This contact gap was recorded. The prestrike arc initiated the ac current, which was interrupted by the test circuit after one half cycle. The contacts were then opened with no current. This process was repeated 5 times. As the experiment progressed the prestrike arcing time increased; i.e. the contact gap broke down at larger and larger gaps during the closing operation resulting in longer and longer prestrike arcing times. We explained this phenomenon by considering the effect of the prestrike arc and the subsequent contact welding on the surface structure of the contacts. The change in the contact's surface structure resulted in an increase of the field enhancement factor, which, in turn, led to the vacuum breakdown of the contacts at increasing contact gaps. For the Cu-Cr contacts the prestrike arcing time was eventually long enough that the contacts formed a weld that the mechanism could not break. Although the prestrike arcing time with the W-Cu contacts did increase, the mechanism always broke any welds that formed.","PeriodicalId":11624,"journal":{"name":"Electrical Contacts - 2007 Proceedings of the 53rd IEEE Holm Conference on Electrical Contacts","volume":"7 1","pages":"32-36"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"16","resultStr":"{\"title\":\"The Effect of Contact Closure in Vacuum with Fault Current on Prestrike Arcing Time, Contact Welding and the Field Enhancement Factor\",\"authors\":\"P. Slade, R. Kirkland, E. Taylor\",\"doi\":\"10.1109/HOLM.2007.4318191\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Experiments were performed with vacuum interrupters containing Cu-Cr (25 wt%) and W-Cu (10 wt%) contacts. The vacuum interrupters were placed in a spring mechanism, which was placed in a tuned, capacitor bank electrical test circuit. The capacitor bank was charged to 25 kV, which allowed a symmetrical fault current of 50 kA (peak) at 30 Hz. As the vacuum interrupter's contacts closed a prestrike arc occurred when the contact spacing was small enough. This contact gap was recorded. The prestrike arc initiated the ac current, which was interrupted by the test circuit after one half cycle. The contacts were then opened with no current. This process was repeated 5 times. As the experiment progressed the prestrike arcing time increased; i.e. the contact gap broke down at larger and larger gaps during the closing operation resulting in longer and longer prestrike arcing times. We explained this phenomenon by considering the effect of the prestrike arc and the subsequent contact welding on the surface structure of the contacts. The change in the contact's surface structure resulted in an increase of the field enhancement factor, which, in turn, led to the vacuum breakdown of the contacts at increasing contact gaps. For the Cu-Cr contacts the prestrike arcing time was eventually long enough that the contacts formed a weld that the mechanism could not break. Although the prestrike arcing time with the W-Cu contacts did increase, the mechanism always broke any welds that formed.\",\"PeriodicalId\":11624,\"journal\":{\"name\":\"Electrical Contacts - 2007 Proceedings of the 53rd IEEE Holm Conference on Electrical Contacts\",\"volume\":\"7 1\",\"pages\":\"32-36\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-09-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"16\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electrical Contacts - 2007 Proceedings of the 53rd IEEE Holm Conference on Electrical Contacts\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/HOLM.2007.4318191\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electrical Contacts - 2007 Proceedings of the 53rd IEEE Holm Conference on Electrical Contacts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/HOLM.2007.4318191","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 16

摘要

实验用含有Cu-Cr (25 wt%)和W-Cu (10 wt%)触点的真空灭弧器进行。真空灭弧放置在弹簧机构中,弹簧机构放置在调谐的电容器组电气测试电路中。电容器组充电至25kv,允许在30hz下对称故障电流为50ka(峰值)。当触点间距足够小时,在真空灭弧器触点闭合时产生预击弧。这个接触间隙被记录下来。预击电弧产生交流电流,在半个周期后被测试电路中断。然后在没有电流的情况下打开触点。此过程重复5次。随着实验的进行,预走弧时间增加;即,在闭合过程中,接触间隙击穿的间隙越来越大,导致预击电弧时间越来越长。我们通过考虑预击电弧和随后的接触焊接对触点表面结构的影响来解释这一现象。触点表面结构的变化导致磁场增强系数的增大,进而导致触点在增大的触点间隙处发生真空击穿。对于Cu-Cr触点,预击弧时间最终足够长,使触点形成一个不断裂的焊缝。虽然钨铜触点的预打弧时间确实增加了,但该机制总是破坏任何形成的焊缝。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Effect of Contact Closure in Vacuum with Fault Current on Prestrike Arcing Time, Contact Welding and the Field Enhancement Factor
Experiments were performed with vacuum interrupters containing Cu-Cr (25 wt%) and W-Cu (10 wt%) contacts. The vacuum interrupters were placed in a spring mechanism, which was placed in a tuned, capacitor bank electrical test circuit. The capacitor bank was charged to 25 kV, which allowed a symmetrical fault current of 50 kA (peak) at 30 Hz. As the vacuum interrupter's contacts closed a prestrike arc occurred when the contact spacing was small enough. This contact gap was recorded. The prestrike arc initiated the ac current, which was interrupted by the test circuit after one half cycle. The contacts were then opened with no current. This process was repeated 5 times. As the experiment progressed the prestrike arcing time increased; i.e. the contact gap broke down at larger and larger gaps during the closing operation resulting in longer and longer prestrike arcing times. We explained this phenomenon by considering the effect of the prestrike arc and the subsequent contact welding on the surface structure of the contacts. The change in the contact's surface structure resulted in an increase of the field enhancement factor, which, in turn, led to the vacuum breakdown of the contacts at increasing contact gaps. For the Cu-Cr contacts the prestrike arcing time was eventually long enough that the contacts formed a weld that the mechanism could not break. Although the prestrike arcing time with the W-Cu contacts did increase, the mechanism always broke any welds that formed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Numerical Analysis of Low-Voltage Circuit-Breakers under Short-Circuit Conditions Influence of Surface Roughness on Contact Voltage Drop of Electrical Sliding Contacts Benchmark Tests of Single-Break and Double-Break Design Principles An Experimental Study of Arc Duration and Transition from Metallic to Gaseous Phase in Ag Alloy Break Arc Thermal Analysis of Sealed Electromagnetic Relays Using 3-D Finite Element Method
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1