纳米技术和纳米科学-从过去的突破到未来的展望

IF 0.6 4区 工程技术 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC Informacije Midem-Journal of Microelectronics Electronic Components and Materials Pub Date : 2021-05-14 DOI:10.33180/infmidem2021.102
Jernej Štremfelj, F. Smole
{"title":"纳米技术和纳米科学-从过去的突破到未来的展望","authors":"Jernej Štremfelj, F. Smole","doi":"10.33180/infmidem2021.102","DOIUrl":null,"url":null,"abstract":"Nanoscience and nanotechnology represent an increasingly important part of our lives. Their achievements are already proving to be useful in everyday life, as well as in the fields of medicine, energetics, environmental protection, transport and electronics along with information technology. In this paper, the development of nanotechnology is presented through its major breakthroughs. A special section is reserved for the development in the field of microelectronics, which is facing numerous challenges, due to downsizing of devices to the nanometre level. Current situation in microelectronics industry and predictions for the next few years are presented. Furthermore, the use of nanotechnology and future prospects for all abovementioned fields are described. The last part of this paper is devoted to the field of electronics and information technology, where some potential nanotechnological solutions for the challenges of microelectronics are implied. The use of carbon nanotubes in logic circuits and memory applications is presented. The basic principle of single-electron transistor is also described. Basic concepts of the use of spintronics in magnetoresistive random access memory (MRAM) structures are explained. Memristor is also presented as an important future prospect. However, the review paper focuses only on positive effects of the use of nanotechnology, and thus does not discuss its possible negative impact on public health and environment.","PeriodicalId":56293,"journal":{"name":"Informacije Midem-Journal of Microelectronics Electronic Components and Materials","volume":"38 1","pages":""},"PeriodicalIF":0.6000,"publicationDate":"2021-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Nanotechnology and Nanoscience – From Past Breakthroughs to Future Prospects\",\"authors\":\"Jernej Štremfelj, F. Smole\",\"doi\":\"10.33180/infmidem2021.102\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Nanoscience and nanotechnology represent an increasingly important part of our lives. Their achievements are already proving to be useful in everyday life, as well as in the fields of medicine, energetics, environmental protection, transport and electronics along with information technology. In this paper, the development of nanotechnology is presented through its major breakthroughs. A special section is reserved for the development in the field of microelectronics, which is facing numerous challenges, due to downsizing of devices to the nanometre level. Current situation in microelectronics industry and predictions for the next few years are presented. Furthermore, the use of nanotechnology and future prospects for all abovementioned fields are described. The last part of this paper is devoted to the field of electronics and information technology, where some potential nanotechnological solutions for the challenges of microelectronics are implied. The use of carbon nanotubes in logic circuits and memory applications is presented. The basic principle of single-electron transistor is also described. Basic concepts of the use of spintronics in magnetoresistive random access memory (MRAM) structures are explained. Memristor is also presented as an important future prospect. However, the review paper focuses only on positive effects of the use of nanotechnology, and thus does not discuss its possible negative impact on public health and environment.\",\"PeriodicalId\":56293,\"journal\":{\"name\":\"Informacije Midem-Journal of Microelectronics Electronic Components and Materials\",\"volume\":\"38 1\",\"pages\":\"\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2021-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Informacije Midem-Journal of Microelectronics Electronic Components and Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.33180/infmidem2021.102\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informacije Midem-Journal of Microelectronics Electronic Components and Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.33180/infmidem2021.102","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

摘要

纳米科学和纳米技术代表了我们生活中越来越重要的一部分。他们的成果已经被证明在日常生活中是有用的,以及在医学、能源学、环境保护、交通、电子以及信息技术领域。本文介绍了纳米技术的发展及其重大突破。由于器件尺寸缩小到纳米级,微电子领域的发展面临着许多挑战。介绍了微电子工业的现状和未来几年的展望。此外,还介绍了纳米技术在上述所有领域的应用和未来前景。本文的最后一部分致力于电子和信息技术领域,其中暗示了一些潜在的纳米技术解决方案,以应对微电子技术的挑战。介绍了碳纳米管在逻辑电路和存储器中的应用。介绍了单电子晶体管的基本原理。介绍了自旋电子学在磁阻随机存取存储器(MRAM)结构中应用的基本概念。忆阻器也被认为是一个重要的发展前景。然而,该审查文件只侧重于使用纳米技术的积极影响,因此没有讨论其对公共卫生和环境可能产生的负面影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Nanotechnology and Nanoscience – From Past Breakthroughs to Future Prospects
Nanoscience and nanotechnology represent an increasingly important part of our lives. Their achievements are already proving to be useful in everyday life, as well as in the fields of medicine, energetics, environmental protection, transport and electronics along with information technology. In this paper, the development of nanotechnology is presented through its major breakthroughs. A special section is reserved for the development in the field of microelectronics, which is facing numerous challenges, due to downsizing of devices to the nanometre level. Current situation in microelectronics industry and predictions for the next few years are presented. Furthermore, the use of nanotechnology and future prospects for all abovementioned fields are described. The last part of this paper is devoted to the field of electronics and information technology, where some potential nanotechnological solutions for the challenges of microelectronics are implied. The use of carbon nanotubes in logic circuits and memory applications is presented. The basic principle of single-electron transistor is also described. Basic concepts of the use of spintronics in magnetoresistive random access memory (MRAM) structures are explained. Memristor is also presented as an important future prospect. However, the review paper focuses only on positive effects of the use of nanotechnology, and thus does not discuss its possible negative impact on public health and environment.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
10
审稿时长
>12 weeks
期刊介绍: Informacije MIDEM publishes original research papers in the fields of microelectronics, electronic components and materials. Review papers are published upon invitation only. Scientific novelty and potential interest for a wider spectrum of readers is desired. Authors are encouraged to provide as much detail as possible for others to be able to replicate their results. Therefore, there is no page limit, provided that the text is concise and comprehensive, and any data that does not fit within a classical manuscript can be added as supplementary material. Topics of interest include: Microelectronics, Semiconductor devices, Nanotechnology, Electronic circuits and devices, Electronic sensors and actuators, Microelectromechanical systems (MEMS), Medical electronics, Bioelectronics, Power electronics, Embedded system electronics, System control electronics, Signal processing, Microwave and millimetre-wave techniques, Wireless and optical communications, Antenna technology, Optoelectronics, Photovoltaics, Ceramic materials for electronic devices, Thick and thin film materials for electronic devices.
期刊最新文献
Towards smaller single-point failure-resilient analog circuits by use of a genetic algorithm A New Design Optimization Methodology of Fully Differential Dynamic Comparator An Energy-efficient and Accuracy-adjustable bfloat16 Multiplier High-Gain Super Class-AB Bulk-driven Sub-threshold Low-Power CMOS Transconductance Amplifier for Biomedical Applications A New Quantum-Based Building Block for Designing a Nano-Circuit with Lower Complexity
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1