非侵入式负载监控:一种计算效率高的混合事件检测算法

A. Rehman, Shafiqur Rahman Tito, T. Lie, P. Nieuwoudt, Neel Pandey, Daud Ahmed, B. Vallès
{"title":"非侵入式负载监控:一种计算效率高的混合事件检测算法","authors":"A. Rehman, Shafiqur Rahman Tito, T. Lie, P. Nieuwoudt, Neel Pandey, Daud Ahmed, B. Vallès","doi":"10.1109/PECon48942.2020.9314442","DOIUrl":null,"url":null,"abstract":"Non-intrusive load monitoring is widely appreciated technique for managing segregated-level energy-efficiency. Event detection algorithms play a crucial role in non-intrusive load monitoring applications. This paper proposes a new unsupervised hybrid event detection algorithm that tracks the difference and standard deviation of the aggregated load data. To evaluate the performance of the proposed algorithm, simulations are carried out on 24 hours of real-world load data from a single household having diverse load elements. This paper also assessed the sensitivity of the input parameter on the performance of the proposed event detector. The proposed hybrid event detection algorithm performed well and accomplished highly promising results.","PeriodicalId":6768,"journal":{"name":"2020 IEEE International Conference on Power and Energy (PECon)","volume":"35 1","pages":"304-308"},"PeriodicalIF":0.0000,"publicationDate":"2020-12-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Non-Intrusive Load Monitoring: A Computationally Efficient Hybrid Event Detection Algorithm\",\"authors\":\"A. Rehman, Shafiqur Rahman Tito, T. Lie, P. Nieuwoudt, Neel Pandey, Daud Ahmed, B. Vallès\",\"doi\":\"10.1109/PECon48942.2020.9314442\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Non-intrusive load monitoring is widely appreciated technique for managing segregated-level energy-efficiency. Event detection algorithms play a crucial role in non-intrusive load monitoring applications. This paper proposes a new unsupervised hybrid event detection algorithm that tracks the difference and standard deviation of the aggregated load data. To evaluate the performance of the proposed algorithm, simulations are carried out on 24 hours of real-world load data from a single household having diverse load elements. This paper also assessed the sensitivity of the input parameter on the performance of the proposed event detector. The proposed hybrid event detection algorithm performed well and accomplished highly promising results.\",\"PeriodicalId\":6768,\"journal\":{\"name\":\"2020 IEEE International Conference on Power and Energy (PECon)\",\"volume\":\"35 1\",\"pages\":\"304-308\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-12-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Power and Energy (PECon)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PECon48942.2020.9314442\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Power and Energy (PECon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PECon48942.2020.9314442","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

非侵入式负荷监测是一种被广泛认可的隔离级能源效率管理技术。事件检测算法在非侵入式负载监控应用中起着至关重要的作用。本文提出了一种新的无监督混合事件检测算法,该算法可以跟踪汇总负荷数据的差值和标准差。为了评估所提出的算法的性能,对具有不同负载元素的单个家庭的24小时真实负载数据进行了模拟。本文还评估了输入参数对所提出的事件检测器性能的灵敏度。所提出的混合事件检测算法性能良好,取得了令人满意的结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Non-Intrusive Load Monitoring: A Computationally Efficient Hybrid Event Detection Algorithm
Non-intrusive load monitoring is widely appreciated technique for managing segregated-level energy-efficiency. Event detection algorithms play a crucial role in non-intrusive load monitoring applications. This paper proposes a new unsupervised hybrid event detection algorithm that tracks the difference and standard deviation of the aggregated load data. To evaluate the performance of the proposed algorithm, simulations are carried out on 24 hours of real-world load data from a single household having diverse load elements. This paper also assessed the sensitivity of the input parameter on the performance of the proposed event detector. The proposed hybrid event detection algorithm performed well and accomplished highly promising results.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Assessment The Overall Health Condition of Transformer Using Health Index and Critical Index Approach: TNB Grid Case Study Buck Converter Design for Photovoltaic Emulator Application A Review of High-Frequency Transformers for Bidirectional Isolated DC-DC Converters Implementation of a Robust Hydrogen-based Grid System to Enhance Power Quality Design Modifications for Cogging Force Reduction in Linear Permanent Magnet Machines
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1