基于图图像的UML缺陷自动检测

Murielle Lokonon, V. R. Houndji
{"title":"基于图图像的UML缺陷自动检测","authors":"Murielle Lokonon, V. R. Houndji","doi":"10.5220/0011316900003277","DOIUrl":null,"url":null,"abstract":": Unified Modeling Language (UML) is a standardized modeling language used to design software systems. However, software engineering learners often have difficulties understanding UML and often repeat the same mistakes. Several solutions automatically correct UML diagrams. These solutions are generally restricted to the modeling tool used or need teachers’ intervention for providing exercises, answers, and other rules to consider for diagrams corrections. This paper proposes a tool that allows the automatic correction of UML diagrams by taking an image as input. The aim is to help UML practicers get automatic feedback on their diagrams regardless of how they have represented them. We have conducted our experiments on the use case diagrams. We have first built a dataset of images of the most elements encountered in the use case diagrams. Then, based on this dataset, we have trained some machine learning models using the Detectron2 library developed by Facebook AI Research (FAIR). Finally, we have used the model with the best performances and a predefined list of errors to set up a tool that can syntactically correct any use case diagram with relatively good precision. Thanks to its genericity, the use of this tool is easier and more practical than the state-of-the-art UML diagrams correction systems.","PeriodicalId":88612,"journal":{"name":"News. Phi Delta Epsilon","volume":"4 1","pages":"193-198"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automatic UML Defects Detection based on Image of Diagram\",\"authors\":\"Murielle Lokonon, V. R. Houndji\",\"doi\":\"10.5220/0011316900003277\",\"DOIUrl\":null,\"url\":null,\"abstract\":\": Unified Modeling Language (UML) is a standardized modeling language used to design software systems. However, software engineering learners often have difficulties understanding UML and often repeat the same mistakes. Several solutions automatically correct UML diagrams. These solutions are generally restricted to the modeling tool used or need teachers’ intervention for providing exercises, answers, and other rules to consider for diagrams corrections. This paper proposes a tool that allows the automatic correction of UML diagrams by taking an image as input. The aim is to help UML practicers get automatic feedback on their diagrams regardless of how they have represented them. We have conducted our experiments on the use case diagrams. We have first built a dataset of images of the most elements encountered in the use case diagrams. Then, based on this dataset, we have trained some machine learning models using the Detectron2 library developed by Facebook AI Research (FAIR). Finally, we have used the model with the best performances and a predefined list of errors to set up a tool that can syntactically correct any use case diagram with relatively good precision. Thanks to its genericity, the use of this tool is easier and more practical than the state-of-the-art UML diagrams correction systems.\",\"PeriodicalId\":88612,\"journal\":{\"name\":\"News. Phi Delta Epsilon\",\"volume\":\"4 1\",\"pages\":\"193-198\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"News. Phi Delta Epsilon\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5220/0011316900003277\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"News. Phi Delta Epsilon","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5220/0011316900003277","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automatic UML Defects Detection based on Image of Diagram
: Unified Modeling Language (UML) is a standardized modeling language used to design software systems. However, software engineering learners often have difficulties understanding UML and often repeat the same mistakes. Several solutions automatically correct UML diagrams. These solutions are generally restricted to the modeling tool used or need teachers’ intervention for providing exercises, answers, and other rules to consider for diagrams corrections. This paper proposes a tool that allows the automatic correction of UML diagrams by taking an image as input. The aim is to help UML practicers get automatic feedback on their diagrams regardless of how they have represented them. We have conducted our experiments on the use case diagrams. We have first built a dataset of images of the most elements encountered in the use case diagrams. Then, based on this dataset, we have trained some machine learning models using the Detectron2 library developed by Facebook AI Research (FAIR). Finally, we have used the model with the best performances and a predefined list of errors to set up a tool that can syntactically correct any use case diagram with relatively good precision. Thanks to its genericity, the use of this tool is easier and more practical than the state-of-the-art UML diagrams correction systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
GAN-Based LiDAR Intensity Simulation Improving Primate Sounds Classification using Binary Presorting for Deep Learning Towards exploring adversarial learning for anomaly detection in complex driving scenes A Study of Neural Collapse for Text Classification Using Artificial Intelligence to Reduce the Risk of Transfusion Hemolytic Reactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1