利用神经网络的PROFINET I/O配置分类

Bjarne Johansson, B. Leander, Aida Čaušević, A. Papadopoulos, T. Nolte
{"title":"利用神经网络的PROFINET I/O配置分类","authors":"Bjarne Johansson, B. Leander, Aida Čaušević, A. Papadopoulos, T. Nolte","doi":"10.1109/ETFA.2019.8869024","DOIUrl":null,"url":null,"abstract":"In process automation installations, the I/O system connect the field devices to the process controller over a fieldbus, a reliable, real-time capable communication link with signal values cyclical being exchanged with a 10–100 millisecond rate. If a deviation from intended behaviour occurs, analyzing the potentially vast data recordings from the field can be a time consuming and cumbersome task for an engineer. For the engineer to be able to get a full understanding of the problem, knowledge of the used I/O configuration is required. In the problem report, the configuration description is sometimes missing. In such cases it is difficult to use the recorded data for analysis of the problem.In this paper we present our ongoing work towards using neural network models as assistance in the interpretation of an industrial fieldbus communication recording. To show the potential of such an approach we present an example using an industrial setup where fieldbus data is collected and classified. In this context we present an evaluation of the suitability of different neural net configurations and sizes for the problem at hand.","PeriodicalId":6682,"journal":{"name":"2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA)","volume":"7 1","pages":"1321-1324"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Classification of PROFINET I/O Configurations utilizing Neural Networks\",\"authors\":\"Bjarne Johansson, B. Leander, Aida Čaušević, A. Papadopoulos, T. Nolte\",\"doi\":\"10.1109/ETFA.2019.8869024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In process automation installations, the I/O system connect the field devices to the process controller over a fieldbus, a reliable, real-time capable communication link with signal values cyclical being exchanged with a 10–100 millisecond rate. If a deviation from intended behaviour occurs, analyzing the potentially vast data recordings from the field can be a time consuming and cumbersome task for an engineer. For the engineer to be able to get a full understanding of the problem, knowledge of the used I/O configuration is required. In the problem report, the configuration description is sometimes missing. In such cases it is difficult to use the recorded data for analysis of the problem.In this paper we present our ongoing work towards using neural network models as assistance in the interpretation of an industrial fieldbus communication recording. To show the potential of such an approach we present an example using an industrial setup where fieldbus data is collected and classified. In this context we present an evaluation of the suitability of different neural net configurations and sizes for the problem at hand.\",\"PeriodicalId\":6682,\"journal\":{\"name\":\"2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA)\",\"volume\":\"7 1\",\"pages\":\"1321-1324\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ETFA.2019.8869024\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 24th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ETFA.2019.8869024","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

在过程自动化装置中,I/O系统通过现场总线将现场设备连接到过程控制器,这是一种可靠的、实时的通信链路,信号值周期性地以10-100毫秒的速率交换。如果发生了偏离预期行为的情况,对工程师来说,分析来自现场的潜在大量数据记录可能是一项耗时且繁琐的任务。为了使工程师能够全面了解问题,需要了解所使用的I/O配置。在问题报告中,有时缺少配置描述。在这种情况下,很难使用记录的数据来分析问题。在本文中,我们介绍了我们正在进行的工作,即使用神经网络模型作为解释工业现场总线通信记录的辅助。为了展示这种方法的潜力,我们提供了一个使用工业设置的示例,其中现场总线数据被收集和分类。在这种情况下,我们提出了不同的神经网络配置和规模的适合性的评估手头的问题。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Classification of PROFINET I/O Configurations utilizing Neural Networks
In process automation installations, the I/O system connect the field devices to the process controller over a fieldbus, a reliable, real-time capable communication link with signal values cyclical being exchanged with a 10–100 millisecond rate. If a deviation from intended behaviour occurs, analyzing the potentially vast data recordings from the field can be a time consuming and cumbersome task for an engineer. For the engineer to be able to get a full understanding of the problem, knowledge of the used I/O configuration is required. In the problem report, the configuration description is sometimes missing. In such cases it is difficult to use the recorded data for analysis of the problem.In this paper we present our ongoing work towards using neural network models as assistance in the interpretation of an industrial fieldbus communication recording. To show the potential of such an approach we present an example using an industrial setup where fieldbus data is collected and classified. In this context we present an evaluation of the suitability of different neural net configurations and sizes for the problem at hand.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An analysis of energy storage system interaction in a multi objective model predictive control based energy management in DC microgrid Latency-Based 5G RAN Slicing Descriptor to Support Deterministic Industry 4.0 Applications CAP: Context-Aware Programming for Cyber Physical Systems Multiplexing Avionics and additional flows on a QoS-aware AFDX network Ultra-Reliable Low Latency based on Retransmission and Spatial Diversity in Slowly Fading Channels with Co-channel Interference
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1