Tingting Tao, Wengao Lu, Ran Fang, Yacong Zhang, Zhongjian Chen
{"title":"用于MEMS振动陀螺仪的低噪声高压接口电路","authors":"Tingting Tao, Wengao Lu, Ran Fang, Yacong Zhang, Zhongjian Chen","doi":"10.1109/EDSSC.2011.6117616","DOIUrl":null,"url":null,"abstract":"The paper presents a low-noise high voltage (HV) CMOS Interface ASIC designed for MEMS vibratory gyroscopes. A closed-loop control is realized in the driving mode. An in-chip level shifter is designed in the loop to achieve a high DC voltage level of 5V which can excite the gyroscope. A DC biasing method is adopted in the interface circuit to convert the amplitude-modulated capacitive signal into voltage. The chip occupies 2.5 × 2.0mm2 in a 0.35 µm 2P3M BCD HV process, which offers buried layer and high voltage N-well isolation to block out the potential coupling noise. Simulation results show that the drive axis can accomplish a closed-loop self-oscillation of the MEMS gyroscope.","PeriodicalId":6363,"journal":{"name":"2011 IEEE International Conference of Electron Devices and Solid-State Circuits","volume":"24 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2011-12-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A low-noise HV interface circuit for MEMS vibratory gyroscope\",\"authors\":\"Tingting Tao, Wengao Lu, Ran Fang, Yacong Zhang, Zhongjian Chen\",\"doi\":\"10.1109/EDSSC.2011.6117616\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The paper presents a low-noise high voltage (HV) CMOS Interface ASIC designed for MEMS vibratory gyroscopes. A closed-loop control is realized in the driving mode. An in-chip level shifter is designed in the loop to achieve a high DC voltage level of 5V which can excite the gyroscope. A DC biasing method is adopted in the interface circuit to convert the amplitude-modulated capacitive signal into voltage. The chip occupies 2.5 × 2.0mm2 in a 0.35 µm 2P3M BCD HV process, which offers buried layer and high voltage N-well isolation to block out the potential coupling noise. Simulation results show that the drive axis can accomplish a closed-loop self-oscillation of the MEMS gyroscope.\",\"PeriodicalId\":6363,\"journal\":{\"name\":\"2011 IEEE International Conference of Electron Devices and Solid-State Circuits\",\"volume\":\"24 1\",\"pages\":\"1-2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-12-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE International Conference of Electron Devices and Solid-State Circuits\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EDSSC.2011.6117616\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE International Conference of Electron Devices and Solid-State Circuits","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EDSSC.2011.6117616","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A low-noise HV interface circuit for MEMS vibratory gyroscope
The paper presents a low-noise high voltage (HV) CMOS Interface ASIC designed for MEMS vibratory gyroscopes. A closed-loop control is realized in the driving mode. An in-chip level shifter is designed in the loop to achieve a high DC voltage level of 5V which can excite the gyroscope. A DC biasing method is adopted in the interface circuit to convert the amplitude-modulated capacitive signal into voltage. The chip occupies 2.5 × 2.0mm2 in a 0.35 µm 2P3M BCD HV process, which offers buried layer and high voltage N-well isolation to block out the potential coupling noise. Simulation results show that the drive axis can accomplish a closed-loop self-oscillation of the MEMS gyroscope.