提高头孢地尼溶解速率的pH改性固体分散体:配方与表征

Q3 Pharmacology, Toxicology and Pharmaceutics Journal of Pharmacy and Nutrition Sciences Pub Date : 2021-11-04 DOI:10.29169/1927-5951.2021.11.13
Raghad Al Nuss, Hind El-Zein
{"title":"提高头孢地尼溶解速率的pH改性固体分散体:配方与表征","authors":"Raghad Al Nuss, Hind El-Zein","doi":"10.29169/1927-5951.2021.11.13","DOIUrl":null,"url":null,"abstract":"Objective: Cefdinir is a poorly- water-soluble drug, it belongs to Biopharmaceutical Classification System class IV, which shows that it may have limited therapeutic effects due to its low solubility and poor bioavailability. The aim of the present work was to design a pH-modified solid dispersion (pHM-SD) that can improve the dissolution rate of cefdinir and subsequently its bioavailability.\nMaterials and Methods: pHM-SDs of cefdinir were prepared at different drug-to-carrier ratios by the spray-drying technique. The solid dispersions were investigated by dissolution studies at different pH media, drug release kinetics were studied, and their solid-state characterizations were performed by FTIR spectrophotometer, Scanning electron microscopy (SEM), Differential scanning calorimetry (DSC), and Powder X-ray diffraction (PXRD).\nResults: PVP- based and HPMC- based pHM-SDs exhibited a marked improvement in the dissolution behavior when compared with crystalline cefdinir powder, whereas Eudragit L100-based pHM-SDs showed lower dissolution at pH 1.2 and 4.5.\nFTIR results may indicate a formation of a salt between cefdinir and the alkalizer. Solid-state characterization may indicate a change in crystallinity of cefdinir into an amorphous state. Mathematical modeling of in vitro dissolution data indicated the best fitting with Korsmeyer–Peppas model and the drug release kinetics primarily as Fickian diffusion.\nConclusion: According to these observations, pHM-SD in the presence of an alkalizer for a poorly water-soluble acidic drug, cefdinir, appeared to be efficacious for enhancing its dissolution rate.","PeriodicalId":16959,"journal":{"name":"Journal of Pharmacy and Nutrition Sciences","volume":"47 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"pH- Modified Solid Dispersions of Cefdinir for Dissolution Rate Enhancement: Formulation and Characterization\",\"authors\":\"Raghad Al Nuss, Hind El-Zein\",\"doi\":\"10.29169/1927-5951.2021.11.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objective: Cefdinir is a poorly- water-soluble drug, it belongs to Biopharmaceutical Classification System class IV, which shows that it may have limited therapeutic effects due to its low solubility and poor bioavailability. The aim of the present work was to design a pH-modified solid dispersion (pHM-SD) that can improve the dissolution rate of cefdinir and subsequently its bioavailability.\\nMaterials and Methods: pHM-SDs of cefdinir were prepared at different drug-to-carrier ratios by the spray-drying technique. The solid dispersions were investigated by dissolution studies at different pH media, drug release kinetics were studied, and their solid-state characterizations were performed by FTIR spectrophotometer, Scanning electron microscopy (SEM), Differential scanning calorimetry (DSC), and Powder X-ray diffraction (PXRD).\\nResults: PVP- based and HPMC- based pHM-SDs exhibited a marked improvement in the dissolution behavior when compared with crystalline cefdinir powder, whereas Eudragit L100-based pHM-SDs showed lower dissolution at pH 1.2 and 4.5.\\nFTIR results may indicate a formation of a salt between cefdinir and the alkalizer. Solid-state characterization may indicate a change in crystallinity of cefdinir into an amorphous state. Mathematical modeling of in vitro dissolution data indicated the best fitting with Korsmeyer–Peppas model and the drug release kinetics primarily as Fickian diffusion.\\nConclusion: According to these observations, pHM-SD in the presence of an alkalizer for a poorly water-soluble acidic drug, cefdinir, appeared to be efficacious for enhancing its dissolution rate.\",\"PeriodicalId\":16959,\"journal\":{\"name\":\"Journal of Pharmacy and Nutrition Sciences\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Pharmacy and Nutrition Sciences\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.29169/1927-5951.2021.11.13\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Pharmacy and Nutrition Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.29169/1927-5951.2021.11.13","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0

摘要

目的:头孢地尼是一种水溶性较差的药物,属于生物制药分类系统第IV类,由于其溶解度低,生物利用度差,治疗效果可能有限。本研究的目的是设计一种ph修饰的固体分散体(pHM-SD),以提高头孢地尼的溶出率和生物利用度。材料与方法:采用喷雾干燥法制备头孢地尼不同药载比的ph - sds。利用FTIR分光光度计、扫描电镜(SEM)、差示扫描量热仪(DSC)和粉末x射线衍射仪(PXRD)对固体分散体进行了表征,并研究了药物释放动力学。结果:PVP基pHM-SDs和HPMC基pHM-SDs在pH为1.2和4.5时的溶出度较头孢地尼结晶粉末有明显改善,而尤德拉吉l100基pHM-SDs在pH为1.2和4.5时的溶出度较低。红外光谱结果可能表明在头孢地尼和碱剂之间形成了一种盐。固态表征可以表明头孢地尼的结晶度转变为非晶态。体外溶出度模型与Korsmeyer-Peppas模型最吻合,药物释放动力学主要为Fickian扩散。结论:根据这些观察,pHM-SD在低水溶性酸性药物头孢地尼的碱剂存在下,似乎可以有效地提高其溶出率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
pH- Modified Solid Dispersions of Cefdinir for Dissolution Rate Enhancement: Formulation and Characterization
Objective: Cefdinir is a poorly- water-soluble drug, it belongs to Biopharmaceutical Classification System class IV, which shows that it may have limited therapeutic effects due to its low solubility and poor bioavailability. The aim of the present work was to design a pH-modified solid dispersion (pHM-SD) that can improve the dissolution rate of cefdinir and subsequently its bioavailability. Materials and Methods: pHM-SDs of cefdinir were prepared at different drug-to-carrier ratios by the spray-drying technique. The solid dispersions were investigated by dissolution studies at different pH media, drug release kinetics were studied, and their solid-state characterizations were performed by FTIR spectrophotometer, Scanning electron microscopy (SEM), Differential scanning calorimetry (DSC), and Powder X-ray diffraction (PXRD). Results: PVP- based and HPMC- based pHM-SDs exhibited a marked improvement in the dissolution behavior when compared with crystalline cefdinir powder, whereas Eudragit L100-based pHM-SDs showed lower dissolution at pH 1.2 and 4.5. FTIR results may indicate a formation of a salt between cefdinir and the alkalizer. Solid-state characterization may indicate a change in crystallinity of cefdinir into an amorphous state. Mathematical modeling of in vitro dissolution data indicated the best fitting with Korsmeyer–Peppas model and the drug release kinetics primarily as Fickian diffusion. Conclusion: According to these observations, pHM-SD in the presence of an alkalizer for a poorly water-soluble acidic drug, cefdinir, appeared to be efficacious for enhancing its dissolution rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Pharmacy and Nutrition Sciences
Journal of Pharmacy and Nutrition Sciences Pharmacology, Toxicology and Pharmaceutics-Pharmacology, Toxicology and Pharmaceutics (all)
自引率
0.00%
发文量
0
期刊最新文献
Assessing the Efficacy of Natural Pet Products in Protecting Gastric Cells and Reducing Cytotoxicity under Hyperacidity Conditions: An In Vitro Study Antioxidant Effect of a Combination of S-Acetyl-L-Glutathione, Vitamin E, Silybum Marianumon Hepatic Cells under Oxidative Stress: An In Vitro Study Protective Effect of Curcuminoids Consumption on Cadmium-Induced Testicular Injury in Albino Rats Clinical Trial: Management of Post-Haemorrhoidectomy Wound Healing by Bergamot Flavonoid-Based Gel and Sodium Hyaluronate: An Observational, Multicentric Trial Acid Suppressant Activity of Feed Dietary Supplements for Dogs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1