分离式霍普金森压杆激光测量技术测定材料动态性能

IF 1.4 4区 工程技术 Q3 ENGINEERING, MECHANICAL Journal of Strain Analysis for Engineering Design Pub Date : 2023-01-29 DOI:10.1177/03093247231152501
S. Mirshafiee, M. Ashrafi, E. Mousavi
{"title":"分离式霍普金森压杆激光测量技术测定材料动态性能","authors":"S. Mirshafiee, M. Ashrafi, E. Mousavi","doi":"10.1177/03093247231152501","DOIUrl":null,"url":null,"abstract":"The split Hopkinson pressure bar (SHPB) is a commonly used technique to measure the stress-strain of materials at high strain rate. Using the strain records in the input and output bars, the average stress-strain and strain rate in the sample can be calculated by SHPB formulas based on the one-dimensional wave propagation theory. The accuracy of a SHPB test is based on this assumption. In this paper, first a laser measuring system is designed, implemented, and calibrated in order to obtain the dynamic properties of different materials using split Hopkinson pressure bar test. In this method which is a non-contact one, the displacements of bar/sample interfaces are measured directly using a laser extensometer technique, by using the provided equations, in addition to the strain, the stress of the tested sample can be calculated. Moreover, the operation of the method is evaluated using numerical simulation. Aluminum 7075 and copper C10200 samples were studied to evaluate the implemented measurement method. The comparison with other measurement methods shows good agreement of numerical and experimental results. Moreover, since the one-dimensional wave propagation is not used directly in this method, we show the proposed method can be used even with shorter pressure bars which can reduce the cost of manufacturing and maintenance of the SHPB apparatus.","PeriodicalId":50038,"journal":{"name":"Journal of Strain Analysis for Engineering Design","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2023-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Determination of dynamic material properties using laser measurement technique in split Hopkinson pressure bar\",\"authors\":\"S. Mirshafiee, M. Ashrafi, E. Mousavi\",\"doi\":\"10.1177/03093247231152501\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The split Hopkinson pressure bar (SHPB) is a commonly used technique to measure the stress-strain of materials at high strain rate. Using the strain records in the input and output bars, the average stress-strain and strain rate in the sample can be calculated by SHPB formulas based on the one-dimensional wave propagation theory. The accuracy of a SHPB test is based on this assumption. In this paper, first a laser measuring system is designed, implemented, and calibrated in order to obtain the dynamic properties of different materials using split Hopkinson pressure bar test. In this method which is a non-contact one, the displacements of bar/sample interfaces are measured directly using a laser extensometer technique, by using the provided equations, in addition to the strain, the stress of the tested sample can be calculated. Moreover, the operation of the method is evaluated using numerical simulation. Aluminum 7075 and copper C10200 samples were studied to evaluate the implemented measurement method. The comparison with other measurement methods shows good agreement of numerical and experimental results. Moreover, since the one-dimensional wave propagation is not used directly in this method, we show the proposed method can be used even with shorter pressure bars which can reduce the cost of manufacturing and maintenance of the SHPB apparatus.\",\"PeriodicalId\":50038,\"journal\":{\"name\":\"Journal of Strain Analysis for Engineering Design\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2023-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Strain Analysis for Engineering Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/03093247231152501\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Strain Analysis for Engineering Design","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/03093247231152501","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0

摘要

分离式霍普金森压力杆(SHPB)是测量材料在高应变速率下应力应变的常用技术。利用输入杆和输出杆的应变记录,利用基于一维波传播理论的SHPB公式计算试样的平均应力-应变和应变率。SHPB测试的准确性基于这一假设。本文首先设计、实现并标定了一套激光测量系统,利用霍普金森压杆劈裂试验获得不同材料的动态特性。该方法是一种非接触式方法,利用激光延伸仪技术直接测量杆/试样界面的位移,根据所提供的方程,除应变外,还可以计算出试样的应力。并通过数值模拟对该方法的有效性进行了评价。以铝7075和铜C10200样品为研究对象,对所实现的测量方法进行了评价。与其它测量方法的比较表明,数值结果与实验结果吻合较好。此外,由于该方法不直接使用一维波传播,因此我们表明,该方法甚至可以使用较短的压力棒,从而降低了SHPB装置的制造和维护成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Determination of dynamic material properties using laser measurement technique in split Hopkinson pressure bar
The split Hopkinson pressure bar (SHPB) is a commonly used technique to measure the stress-strain of materials at high strain rate. Using the strain records in the input and output bars, the average stress-strain and strain rate in the sample can be calculated by SHPB formulas based on the one-dimensional wave propagation theory. The accuracy of a SHPB test is based on this assumption. In this paper, first a laser measuring system is designed, implemented, and calibrated in order to obtain the dynamic properties of different materials using split Hopkinson pressure bar test. In this method which is a non-contact one, the displacements of bar/sample interfaces are measured directly using a laser extensometer technique, by using the provided equations, in addition to the strain, the stress of the tested sample can be calculated. Moreover, the operation of the method is evaluated using numerical simulation. Aluminum 7075 and copper C10200 samples were studied to evaluate the implemented measurement method. The comparison with other measurement methods shows good agreement of numerical and experimental results. Moreover, since the one-dimensional wave propagation is not used directly in this method, we show the proposed method can be used even with shorter pressure bars which can reduce the cost of manufacturing and maintenance of the SHPB apparatus.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Strain Analysis for Engineering Design
Journal of Strain Analysis for Engineering Design 工程技术-材料科学:表征与测试
CiteScore
3.50
自引率
6.20%
发文量
25
审稿时长
>12 weeks
期刊介绍: The Journal of Strain Analysis for Engineering Design provides a forum for work relating to the measurement and analysis of strain that is appropriate to engineering design and practice. "Since launching in 1965, The Journal of Strain Analysis has been a collegiate effort, dedicated to providing exemplary service to our authors. We welcome contributions related to analytical, experimental, and numerical techniques for the analysis and/or measurement of stress and/or strain, or studies of relevant material properties and failure modes. Our international Editorial Board contains experts in all of these fields and is keen to encourage papers on novel techniques and innovative applications." Professor Eann Patterson - University of Liverpool, UK This journal is a member of the Committee on Publication Ethics (COPE).
期刊最新文献
Anti-plane analysis of a crack terminating at interface of the isotropic half-planes bonded to intact orthotropic layers Compressive performance of paper honeycomb core layer with double-hole in cell walls A novel multiaxial fatigue life prediction model based on the critical plane theory and machine-learning method Non-linear analysis of the flexural-torsional stability of slender tropical glulam beams Approximate methods for contact problems involving beams
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1