{"title":"面向数字农业系统的深度卷积神经网络马铃薯叶片病害预测","authors":"M. Al-Amin, Tasfia Anika Bushra, Md Nazmul Hoq","doi":"10.1109/ICASERT.2019.8934933","DOIUrl":null,"url":null,"abstract":"Potato is one of the most used crops in the world and 2nd most important crop in Bangladesh. Our economy is largely affected by the production of potato. But its production is hampered due to different diseases of potato leaves. These diseases decrease production and increase the price of potatoes. Our objective is to develop an automated system which will predict the potato disease and helps farmers to take necessary steps. In this work, we implemented a model based on Convolutional Neural Network (CNN) which provides 98.33% accurate result in predicting different diseases of potatoes. This is the maximum accuracy gained for only potato disease prediction to the best of our understanding. The system is cost effective, less time consuming and provides an efficient way of predicting potato diseases from leaves. This will help the farmers and lead our country towards a digital agricultural system.","PeriodicalId":6613,"journal":{"name":"2019 1st International Conference on Advances in Science, Engineering and Robotics Technology (ICASERT)","volume":"89 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2019-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"12","resultStr":"{\"title\":\"Prediction of Potato Disease from Leaves using Deep Convolution Neural Network towards a Digital Agricultural System\",\"authors\":\"M. Al-Amin, Tasfia Anika Bushra, Md Nazmul Hoq\",\"doi\":\"10.1109/ICASERT.2019.8934933\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Potato is one of the most used crops in the world and 2nd most important crop in Bangladesh. Our economy is largely affected by the production of potato. But its production is hampered due to different diseases of potato leaves. These diseases decrease production and increase the price of potatoes. Our objective is to develop an automated system which will predict the potato disease and helps farmers to take necessary steps. In this work, we implemented a model based on Convolutional Neural Network (CNN) which provides 98.33% accurate result in predicting different diseases of potatoes. This is the maximum accuracy gained for only potato disease prediction to the best of our understanding. The system is cost effective, less time consuming and provides an efficient way of predicting potato diseases from leaves. This will help the farmers and lead our country towards a digital agricultural system.\",\"PeriodicalId\":6613,\"journal\":{\"name\":\"2019 1st International Conference on Advances in Science, Engineering and Robotics Technology (ICASERT)\",\"volume\":\"89 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"12\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 1st International Conference on Advances in Science, Engineering and Robotics Technology (ICASERT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASERT.2019.8934933\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 1st International Conference on Advances in Science, Engineering and Robotics Technology (ICASERT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASERT.2019.8934933","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Prediction of Potato Disease from Leaves using Deep Convolution Neural Network towards a Digital Agricultural System
Potato is one of the most used crops in the world and 2nd most important crop in Bangladesh. Our economy is largely affected by the production of potato. But its production is hampered due to different diseases of potato leaves. These diseases decrease production and increase the price of potatoes. Our objective is to develop an automated system which will predict the potato disease and helps farmers to take necessary steps. In this work, we implemented a model based on Convolutional Neural Network (CNN) which provides 98.33% accurate result in predicting different diseases of potatoes. This is the maximum accuracy gained for only potato disease prediction to the best of our understanding. The system is cost effective, less time consuming and provides an efficient way of predicting potato diseases from leaves. This will help the farmers and lead our country towards a digital agricultural system.