iFACT:评估推文声明的交互式框架

Wee-Yong Lim, M. Lee, W. Hsu
{"title":"iFACT:评估推文声明的交互式框架","authors":"Wee-Yong Lim, M. Lee, W. Hsu","doi":"10.1145/3132847.3132995","DOIUrl":null,"url":null,"abstract":"Posts by users on microblogs such as Twitter provide diverse real-time updates to major events. Unfortunately, not all the information are credible. Previous works that assess the credibility of information in Twitter have focused on extracting features from the Tweets. In this work, we present an interactive framework called iFACT for assessing the credibility of claims from tweets. The proposed framework collects independent evidence from web search results (WSR) and identify the dependencies between claims. It utilizes features from the search results to determine the probabilities that a claim is credible, not credible or inconclusive. Finally, the dependencies between claims are used to adjust the likelihood estimates of a claim being credible, not credible or inconclusive. iFACT allows users to be engaged in the credibility assessment process by providing feedback as to whether the web search results are relevant, support or contradict a claim. Experiment results on multiple real world datasets demonstrate the effectiveness of WSR features and its ability to generalize to claims of new events. Case studies show the usefulness of claim dependencies and how the proposed approach can give explanation to the credibility assessment process.","PeriodicalId":20449,"journal":{"name":"Proceedings of the 2017 ACM on Conference on Information and Knowledge Management","volume":"11 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2017-11-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"iFACT: An Interactive Framework to Assess Claims from Tweets\",\"authors\":\"Wee-Yong Lim, M. Lee, W. Hsu\",\"doi\":\"10.1145/3132847.3132995\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Posts by users on microblogs such as Twitter provide diverse real-time updates to major events. Unfortunately, not all the information are credible. Previous works that assess the credibility of information in Twitter have focused on extracting features from the Tweets. In this work, we present an interactive framework called iFACT for assessing the credibility of claims from tweets. The proposed framework collects independent evidence from web search results (WSR) and identify the dependencies between claims. It utilizes features from the search results to determine the probabilities that a claim is credible, not credible or inconclusive. Finally, the dependencies between claims are used to adjust the likelihood estimates of a claim being credible, not credible or inconclusive. iFACT allows users to be engaged in the credibility assessment process by providing feedback as to whether the web search results are relevant, support or contradict a claim. Experiment results on multiple real world datasets demonstrate the effectiveness of WSR features and its ability to generalize to claims of new events. Case studies show the usefulness of claim dependencies and how the proposed approach can give explanation to the credibility assessment process.\",\"PeriodicalId\":20449,\"journal\":{\"name\":\"Proceedings of the 2017 ACM on Conference on Information and Knowledge Management\",\"volume\":\"11 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2017 ACM on Conference on Information and Knowledge Management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3132847.3132995\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2017 ACM on Conference on Information and Knowledge Management","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3132847.3132995","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

用户在Twitter等微博上发布的帖子提供了对重大事件的各种实时更新。不幸的是,并非所有的信息都是可信的。之前评估推特信息可信度的工作主要集中在从推特中提取特征。在这项工作中,我们提出了一个名为iFACT的交互式框架,用于评估推文声明的可信度。该框架从网络搜索结果(WSR)中收集独立证据,并识别索赔之间的依赖关系。它利用搜索结果中的特征来确定索赔是可信的、不可信的或不确定的概率。最后,索赔之间的依赖关系用于调整索赔可信、不可信或不确定的可能性估计。iFACT允许用户通过提供反馈来参与可信度评估过程,以确定网络搜索结果是否相关、是否支持或反驳某一主张。在多个真实世界数据集上的实验结果证明了WSR特征的有效性及其推广到新事件声明的能力。案例研究表明索赔依赖关系的有用性,以及所建议的方法如何解释可信度评估过程。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
iFACT: An Interactive Framework to Assess Claims from Tweets
Posts by users on microblogs such as Twitter provide diverse real-time updates to major events. Unfortunately, not all the information are credible. Previous works that assess the credibility of information in Twitter have focused on extracting features from the Tweets. In this work, we present an interactive framework called iFACT for assessing the credibility of claims from tweets. The proposed framework collects independent evidence from web search results (WSR) and identify the dependencies between claims. It utilizes features from the search results to determine the probabilities that a claim is credible, not credible or inconclusive. Finally, the dependencies between claims are used to adjust the likelihood estimates of a claim being credible, not credible or inconclusive. iFACT allows users to be engaged in the credibility assessment process by providing feedback as to whether the web search results are relevant, support or contradict a claim. Experiment results on multiple real world datasets demonstrate the effectiveness of WSR features and its ability to generalize to claims of new events. Case studies show the usefulness of claim dependencies and how the proposed approach can give explanation to the credibility assessment process.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Query and Animate Multi-attribute Trajectory Data HyPerInsight: Data Exploration Deep Inside HyPer Algorithmic Bias: Do Good Systems Make Relevant Documents More Retrievable? NeuPL: Attention-based Semantic Matching and Pair-Linking for Entity Disambiguation Health Forum Thread Recommendation Using an Interest Aware Topic Model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1