用振动声学RFA评估种植体稳定性的共振频率和微运动:一个数学模型

Vineet Khened, Kanad Dhok, M. Pradhan, P. Dhatrak
{"title":"用振动声学RFA评估种植体稳定性的共振频率和微运动:一个数学模型","authors":"Vineet Khened, Kanad Dhok, M. Pradhan, P. Dhatrak","doi":"10.1115/1.4056951","DOIUrl":null,"url":null,"abstract":"\n Dental implants are surgically implanted into the patient's jaw to replace a missing tooth. The implant should have adequate time to integrate with bone before being subjected to masticatory force to avoid early failure. Resonance Frequency Analysis (RFA) is one of the approaches for determining an implant system's primary stability in terms of micromotion. This research aims to create a two-degree of freedom (dof) mathematical model for dental prostheses based on the vibroacoustic RFA approach. In vibroacoustic system, a loudspeaker or buzzer is used as an input and the displacement of implant is measured using RFA. A sinusoidal force is used which produces a combination of translational and rotational motion of the implant system. While adjusting the input frequency from 4000 to 12000 Hz, is used with the help of MATLAB which later computes the implant system's subsequent micro-motion and resonance frequency. MATLAB is used to visualise the resonance frequency, which is 6658.38 Hz in case of rotational motion and 8138 Hz in translational motion. The micromotion was 1.2692 X 10-11 meters in case of translational motion and 6.91088 X 10-9 radians in case of rotational motion. When there is less micromotion, a higher resonance frequency suggests more excellent osseointegration. For the evaluation of implant stability, a mathematical model is a primary approach which can be implemented to design a stability device using vibroacoustic RFA.","PeriodicalId":73734,"journal":{"name":"Journal of engineering and science in medical diagnostics and therapy","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Evaluation of Resonance Frequency and Micro motion to achieve Implant Stability using Vibroacoustic RFA: A Mathematical Model\",\"authors\":\"Vineet Khened, Kanad Dhok, M. Pradhan, P. Dhatrak\",\"doi\":\"10.1115/1.4056951\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Dental implants are surgically implanted into the patient's jaw to replace a missing tooth. The implant should have adequate time to integrate with bone before being subjected to masticatory force to avoid early failure. Resonance Frequency Analysis (RFA) is one of the approaches for determining an implant system's primary stability in terms of micromotion. This research aims to create a two-degree of freedom (dof) mathematical model for dental prostheses based on the vibroacoustic RFA approach. In vibroacoustic system, a loudspeaker or buzzer is used as an input and the displacement of implant is measured using RFA. A sinusoidal force is used which produces a combination of translational and rotational motion of the implant system. While adjusting the input frequency from 4000 to 12000 Hz, is used with the help of MATLAB which later computes the implant system's subsequent micro-motion and resonance frequency. MATLAB is used to visualise the resonance frequency, which is 6658.38 Hz in case of rotational motion and 8138 Hz in translational motion. The micromotion was 1.2692 X 10-11 meters in case of translational motion and 6.91088 X 10-9 radians in case of rotational motion. When there is less micromotion, a higher resonance frequency suggests more excellent osseointegration. For the evaluation of implant stability, a mathematical model is a primary approach which can be implemented to design a stability device using vibroacoustic RFA.\",\"PeriodicalId\":73734,\"journal\":{\"name\":\"Journal of engineering and science in medical diagnostics and therapy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-02-24\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of engineering and science in medical diagnostics and therapy\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4056951\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of engineering and science in medical diagnostics and therapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4056951","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

植牙是通过外科手术将牙植入病人的下颌以代替缺牙。种植体在接受咀嚼力之前应有足够的时间与骨融合,以避免早期失效。共振频率分析(RFA)是确定植入体系统微动稳定性的方法之一。本研究旨在建立基于振动声学RFA方法的口腔修复体的二自由度数学模型。在振动声学系统中,使用扬声器或蜂鸣器作为输入,并使用RFA测量植入物的位移。使用正弦力产生植入体系统的平移和旋转运动的组合。在将输入频率从4000 Hz调整到12000 Hz的同时,借助MATLAB计算植入体系统的后续微运动和共振频率。利用MATLAB可视化了共振频率,旋转运动时为6658.38 Hz,平移运动时为8138 Hz。平移微运动为1.2692 X 10-11米,旋转微运动为6.91088 X 10-9弧度。微动越少,共振频率越高,骨整合越好。为了评估植入体的稳定性,数学模型是采用振动声RFA设计稳定装置的主要方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Evaluation of Resonance Frequency and Micro motion to achieve Implant Stability using Vibroacoustic RFA: A Mathematical Model
Dental implants are surgically implanted into the patient's jaw to replace a missing tooth. The implant should have adequate time to integrate with bone before being subjected to masticatory force to avoid early failure. Resonance Frequency Analysis (RFA) is one of the approaches for determining an implant system's primary stability in terms of micromotion. This research aims to create a two-degree of freedom (dof) mathematical model for dental prostheses based on the vibroacoustic RFA approach. In vibroacoustic system, a loudspeaker or buzzer is used as an input and the displacement of implant is measured using RFA. A sinusoidal force is used which produces a combination of translational and rotational motion of the implant system. While adjusting the input frequency from 4000 to 12000 Hz, is used with the help of MATLAB which later computes the implant system's subsequent micro-motion and resonance frequency. MATLAB is used to visualise the resonance frequency, which is 6658.38 Hz in case of rotational motion and 8138 Hz in translational motion. The micromotion was 1.2692 X 10-11 meters in case of translational motion and 6.91088 X 10-9 radians in case of rotational motion. When there is less micromotion, a higher resonance frequency suggests more excellent osseointegration. For the evaluation of implant stability, a mathematical model is a primary approach which can be implemented to design a stability device using vibroacoustic RFA.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
High-Speed Three-Dimensional-Digital Image Correlation and Schlieren Imaging Integrated With Shock Tube Loading for Investigating Dynamic Response of Human Tympanic Membrane Exposed to Blasts. Quantifying the Fascicular Changes in Recovered Achilles Tendon Patients Using Diffusion Magnetic Resonance Imaging and Tractography. Assistive Technology for Real-Time Fall Prevention during Walking: Evaluation of the Effect of an Intelligent Foot Orthosis A Simple Poc Device for Temperature Control of Multiple Reactions During Recombinase Polymerase Amplification Auxetic Structure Inspired Microneedle Arrays for Minimally Invasive Drug Delivery
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1