{"title":"Implementasi Algoritma Naïve Bayes Berbasis Particle Swarm Optimization Untuk Memprediksi Penyakit Hepatitis","authors":"Hilda Farida Husniah, Toni Arifin","doi":"10.24843/jik.2021.v14.i01.p05","DOIUrl":null,"url":null,"abstract":"Penyakit Hepatitis merupakan penyakit peradangan pada sel-sel hati, yang disebabkan oleh infeksi (virus, bakteri, parasite), obat-obatan (termasuk obat tradisional), mengkonsumsi alkohol, lemak yang berlebihan dan penyakit autoimmune. Penyebab terjadinya Hepatitis adalah sering disebabkan oleh Virus Hepatitis B dan C. Prevalensi Hepatitis di Indonesia pada tahun 2013 sebesar 1,2% meningkat dua kali dibandingkan Riskesdas tahun 2007 yang sebesar 0,6%. Nusa Tenggara Timur merupakan provinsi dengan prevalensi Hepatitis tertinggi pada tahun 2013 yaitu sebesar 4,3%. Para peneliti berusaha membuat terobosan dengan membuat penelitian untuk klasifikasi prediksi pasien Hepatitis dengan teknik data mining. Naïve bayes merupakan metode yang digunakan untuk memprediksi probabilitas dimasa depan berdasarkan pengalaman dimasa lalu dan terbukti memiliki tingkat akurasi tinggi dan kecepatan yang tinggi dalan perhitungannya. Particle Swarm Optimization digunakan untuk meningkatkan akurasi dari metode. Penelitian ini bertujuan untuk mengetahui apakah metode Naïve Bayes berbasis Particle Swarm Optimization dapat meningkatkan akurasi yang baik. Hasil penelitian menggunakan Naïve Bayes berbasis Particle Swarm Optimization memiliki akurasi confusion matrix sebesar 91.90% dan AUC sebesar 0.946 terbukti bahwa memiliki hasil yang bagus dibanding Naïve Bayes memiliki akurasi confusion matrix sebesar 88.52% dan AUC 0.896.","PeriodicalId":31227,"journal":{"name":"KLIK Kumpulan jurnaL Ilmu Komputer","volume":"25 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"KLIK Kumpulan jurnaL Ilmu Komputer","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.24843/jik.2021.v14.i01.p05","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Implementasi Algoritma Naïve Bayes Berbasis Particle Swarm Optimization Untuk Memprediksi Penyakit Hepatitis
Penyakit Hepatitis merupakan penyakit peradangan pada sel-sel hati, yang disebabkan oleh infeksi (virus, bakteri, parasite), obat-obatan (termasuk obat tradisional), mengkonsumsi alkohol, lemak yang berlebihan dan penyakit autoimmune. Penyebab terjadinya Hepatitis adalah sering disebabkan oleh Virus Hepatitis B dan C. Prevalensi Hepatitis di Indonesia pada tahun 2013 sebesar 1,2% meningkat dua kali dibandingkan Riskesdas tahun 2007 yang sebesar 0,6%. Nusa Tenggara Timur merupakan provinsi dengan prevalensi Hepatitis tertinggi pada tahun 2013 yaitu sebesar 4,3%. Para peneliti berusaha membuat terobosan dengan membuat penelitian untuk klasifikasi prediksi pasien Hepatitis dengan teknik data mining. Naïve bayes merupakan metode yang digunakan untuk memprediksi probabilitas dimasa depan berdasarkan pengalaman dimasa lalu dan terbukti memiliki tingkat akurasi tinggi dan kecepatan yang tinggi dalan perhitungannya. Particle Swarm Optimization digunakan untuk meningkatkan akurasi dari metode. Penelitian ini bertujuan untuk mengetahui apakah metode Naïve Bayes berbasis Particle Swarm Optimization dapat meningkatkan akurasi yang baik. Hasil penelitian menggunakan Naïve Bayes berbasis Particle Swarm Optimization memiliki akurasi confusion matrix sebesar 91.90% dan AUC sebesar 0.946 terbukti bahwa memiliki hasil yang bagus dibanding Naïve Bayes memiliki akurasi confusion matrix sebesar 88.52% dan AUC 0.896.