S. Zeinolabedin, A. Do, Dongsuk Jeon, D. Sylvester, T. T. Kim
{"title":"128通道尖峰排序处理器,每通道0.175µW, 0.0033 mm2, 65nm CMOS","authors":"S. Zeinolabedin, A. Do, Dongsuk Jeon, D. Sylvester, T. T. Kim","doi":"10.1109/VLSIC.2016.7573467","DOIUrl":null,"url":null,"abstract":"This paper presents a power and area efficient processor for real-time neural spike-sorting. We propose a robust spike detector (SD), a feature extractor (FE), and an improved k-means algorithm for better clustering accuracy. Furthermore, time-multiplexing architecture is used in SD for dynamic power reduction. A customized 39kb 8T SRAM is also implemented to minimize leakage and storage area. The proposed processor consumes 0.175 μW/ch with leakage of 0.03 μW/ch at 0.54 V and area of 0.0033 mm2/ch.","PeriodicalId":6512,"journal":{"name":"2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits)","volume":"26 1","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2016-06-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"A 128-channel spike sorting processor featuring 0.175 µW and 0.0033 mm2 per channel in 65-nm CMOS\",\"authors\":\"S. Zeinolabedin, A. Do, Dongsuk Jeon, D. Sylvester, T. T. Kim\",\"doi\":\"10.1109/VLSIC.2016.7573467\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a power and area efficient processor for real-time neural spike-sorting. We propose a robust spike detector (SD), a feature extractor (FE), and an improved k-means algorithm for better clustering accuracy. Furthermore, time-multiplexing architecture is used in SD for dynamic power reduction. A customized 39kb 8T SRAM is also implemented to minimize leakage and storage area. The proposed processor consumes 0.175 μW/ch with leakage of 0.03 μW/ch at 0.54 V and area of 0.0033 mm2/ch.\",\"PeriodicalId\":6512,\"journal\":{\"name\":\"2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits)\",\"volume\":\"26 1\",\"pages\":\"1-2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-06-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/VLSIC.2016.7573467\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE Symposium on VLSI Circuits (VLSI-Circuits)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/VLSIC.2016.7573467","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A 128-channel spike sorting processor featuring 0.175 µW and 0.0033 mm2 per channel in 65-nm CMOS
This paper presents a power and area efficient processor for real-time neural spike-sorting. We propose a robust spike detector (SD), a feature extractor (FE), and an improved k-means algorithm for better clustering accuracy. Furthermore, time-multiplexing architecture is used in SD for dynamic power reduction. A customized 39kb 8T SRAM is also implemented to minimize leakage and storage area. The proposed processor consumes 0.175 μW/ch with leakage of 0.03 μW/ch at 0.54 V and area of 0.0033 mm2/ch.