光伏组件制造成本背景下碲、铟和镓的供应链动态

M. Woodhouse, A. Goodrich, R. Margolis, T. James, Martin Lokanc, R. Eggert
{"title":"光伏组件制造成本背景下碲、铟和镓的供应链动态","authors":"M. Woodhouse, A. Goodrich, R. Margolis, T. James, Martin Lokanc, R. Eggert","doi":"10.1109/pvsc-vol2.2013.6656796","DOIUrl":null,"url":null,"abstract":"Given the need for humankind to implement more sustainable energy choices, it is crucial for energy systems such as PV to demonstrate success both soon and over the long-term quest for meaningful deployment. To that end, both the crystalline silicon and thin-film technologies have made, and continue to make, remarkable strides toward providing solutions that are quickly becoming more competitive against the traditional sources for power generation. But, within the thin-film segment of this industry, the highest demonstrated sunlight power conversion efficiencies have thus far come from technologies containing relatively rare constituent elements. These include tellurium in cadmium telluride, and indium and/or gallium in the CIS/ CIGS and III–V families of technologies. In this paper we show that the current global supply base for these three energy-critical elements is not sufficient for enabling energy-significant levels of deployment, but also show that every one of the thin-film PV technologies that we describe has the ability to absorb an increase in the price for each constituent element(s). This ability then leads to the possibility that the supply base for each element can be augmented.","PeriodicalId":6420,"journal":{"name":"2012 IEEE 38th Photovoltaic Specialists Conference (PVSC) PART 2","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Supply-chain dynamics of tellurium, indium and gallium within the context of PV module manufacturing costs\",\"authors\":\"M. Woodhouse, A. Goodrich, R. Margolis, T. James, Martin Lokanc, R. Eggert\",\"doi\":\"10.1109/pvsc-vol2.2013.6656796\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Given the need for humankind to implement more sustainable energy choices, it is crucial for energy systems such as PV to demonstrate success both soon and over the long-term quest for meaningful deployment. To that end, both the crystalline silicon and thin-film technologies have made, and continue to make, remarkable strides toward providing solutions that are quickly becoming more competitive against the traditional sources for power generation. But, within the thin-film segment of this industry, the highest demonstrated sunlight power conversion efficiencies have thus far come from technologies containing relatively rare constituent elements. These include tellurium in cadmium telluride, and indium and/or gallium in the CIS/ CIGS and III–V families of technologies. In this paper we show that the current global supply base for these three energy-critical elements is not sufficient for enabling energy-significant levels of deployment, but also show that every one of the thin-film PV technologies that we describe has the ability to absorb an increase in the price for each constituent element(s). This ability then leads to the possibility that the supply base for each element can be augmented.\",\"PeriodicalId\":6420,\"journal\":{\"name\":\"2012 IEEE 38th Photovoltaic Specialists Conference (PVSC) PART 2\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2012 IEEE 38th Photovoltaic Specialists Conference (PVSC) PART 2\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/pvsc-vol2.2013.6656796\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2012 IEEE 38th Photovoltaic Specialists Conference (PVSC) PART 2","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/pvsc-vol2.2013.6656796","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

鉴于人类需要实施更可持续的能源选择,光伏等能源系统在短期和长期的有意义的部署中取得成功至关重要。为此,晶体硅和薄膜技术在提供解决方案方面取得了显著进展,并将继续取得显著进展,这些解决方案很快就会与传统的发电来源相比更具竞争力。但是,在该行业的薄膜领域,迄今为止,最高的太阳能转换效率来自于含有相对稀有成分的技术。这些包括碲化镉中的碲,以及CIS/ CIGS和III-V系列技术中的铟和/或镓。在本文中,我们表明,目前这三种能源关键要素的全球供应基础不足以实现能源重要水平的部署,但也表明,我们所描述的每一种薄膜光伏技术都有能力吸收每种构成要素价格的上涨。这一能力将导致每个元素的供应基础能够得到扩展。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Supply-chain dynamics of tellurium, indium and gallium within the context of PV module manufacturing costs
Given the need for humankind to implement more sustainable energy choices, it is crucial for energy systems such as PV to demonstrate success both soon and over the long-term quest for meaningful deployment. To that end, both the crystalline silicon and thin-film technologies have made, and continue to make, remarkable strides toward providing solutions that are quickly becoming more competitive against the traditional sources for power generation. But, within the thin-film segment of this industry, the highest demonstrated sunlight power conversion efficiencies have thus far come from technologies containing relatively rare constituent elements. These include tellurium in cadmium telluride, and indium and/or gallium in the CIS/ CIGS and III–V families of technologies. In this paper we show that the current global supply base for these three energy-critical elements is not sufficient for enabling energy-significant levels of deployment, but also show that every one of the thin-film PV technologies that we describe has the ability to absorb an increase in the price for each constituent element(s). This ability then leads to the possibility that the supply base for each element can be augmented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Initial operating experience of the 1.2-MW La Ola photovoltaic system The impact of selenisation on damp heat degradation of the CIGS back contact molybdenum Remote plasma chemical vapor deposition for high-efficiency ultra-thin ∼25-microns crystalline Si solar cells Study of point defects in ns pulsed-laser annealed CuInSe2 thin films Optical monitoring and control of three-stage coevaporated Cu(In1−xGax)Se2 by real-time spectroscopic ellipsometry
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1