基于green-naghdi定理的热弹性氮化硅纳米梁在机械损伤和斜坡型热作用下的振动

IF 1.4 4区 工程技术 Q3 ENGINEERING, MECHANICAL Journal of Strain Analysis for Engineering Design Pub Date : 2021-11-15 DOI:10.1177/03093247211058241
H. Youssef, Hamzah A. Alharthi, Mohamed Kurdi
{"title":"基于green-naghdi定理的热弹性氮化硅纳米梁在机械损伤和斜坡型热作用下的振动","authors":"H. Youssef, Hamzah A. Alharthi, Mohamed Kurdi","doi":"10.1177/03093247211058241","DOIUrl":null,"url":null,"abstract":"In this work, an analysis for thermoelastic homogeneous isotropic nanobeams under damage mechanics consideration was built. Under easily supported boundary conditions with fixed side ratios, the Green-Naghdi model type-II, an extended thermoelasticity theory model, has been utilized. For the governing differential equations, the Laplace transforms technique was used on the time variable. The answers were found in the domain of the Laplace transform. Tzou’s approximation approach based on an iteration formula was used to calculate the Laplace transform inversions numerically. The numerical findings for a rectangular silicon nitride thermoelastic nanobeam have been obtained and validated. As a case study, we assumed that the beam is thermally loaded with ramp-type heat and that its two edges are simply supported. Figures representing different scenarios have been used to display the numerical results. Mechanical damage value, ramp-time heat parameter and beam thickness are all reported to have a substantial influence on all of the examined functions.","PeriodicalId":50038,"journal":{"name":"Journal of Strain Analysis for Engineering Design","volume":"3 1","pages":"596 - 606"},"PeriodicalIF":1.4000,"publicationDate":"2021-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"The vibration of thermoelastic silicon nitride Nanobeam based on green-naghdi theorem type-II subjected to mechanical damage and ramp-type heat\",\"authors\":\"H. Youssef, Hamzah A. Alharthi, Mohamed Kurdi\",\"doi\":\"10.1177/03093247211058241\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, an analysis for thermoelastic homogeneous isotropic nanobeams under damage mechanics consideration was built. Under easily supported boundary conditions with fixed side ratios, the Green-Naghdi model type-II, an extended thermoelasticity theory model, has been utilized. For the governing differential equations, the Laplace transforms technique was used on the time variable. The answers were found in the domain of the Laplace transform. Tzou’s approximation approach based on an iteration formula was used to calculate the Laplace transform inversions numerically. The numerical findings for a rectangular silicon nitride thermoelastic nanobeam have been obtained and validated. As a case study, we assumed that the beam is thermally loaded with ramp-type heat and that its two edges are simply supported. Figures representing different scenarios have been used to display the numerical results. Mechanical damage value, ramp-time heat parameter and beam thickness are all reported to have a substantial influence on all of the examined functions.\",\"PeriodicalId\":50038,\"journal\":{\"name\":\"Journal of Strain Analysis for Engineering Design\",\"volume\":\"3 1\",\"pages\":\"596 - 606\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-11-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Strain Analysis for Engineering Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/03093247211058241\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Strain Analysis for Engineering Design","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/03093247211058241","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1

摘要

本文对热弹性均匀各向同性纳米梁进行了损伤力学分析。在边比固定的易支撑边界条件下,采用了扩展的热弹性理论模型Green-Naghdi模型。对于控制微分方程,对时间变量采用拉普拉斯变换技术。答案是在拉普拉斯变换的定义域中找到的。采用基于迭代公式的Tzou近似方法对拉普拉斯变换反演进行数值计算。得到并验证了矩形氮化硅热弹性纳米梁的数值结果。作为一个案例研究,我们假设梁的热负荷是坡道型的热量,它的两个边缘是简单的支撑。用不同情景的图形来显示数值结果。据报道,机械损伤值、斜坡时间热参数和梁厚度对所有检测功能都有实质性影响。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The vibration of thermoelastic silicon nitride Nanobeam based on green-naghdi theorem type-II subjected to mechanical damage and ramp-type heat
In this work, an analysis for thermoelastic homogeneous isotropic nanobeams under damage mechanics consideration was built. Under easily supported boundary conditions with fixed side ratios, the Green-Naghdi model type-II, an extended thermoelasticity theory model, has been utilized. For the governing differential equations, the Laplace transforms technique was used on the time variable. The answers were found in the domain of the Laplace transform. Tzou’s approximation approach based on an iteration formula was used to calculate the Laplace transform inversions numerically. The numerical findings for a rectangular silicon nitride thermoelastic nanobeam have been obtained and validated. As a case study, we assumed that the beam is thermally loaded with ramp-type heat and that its two edges are simply supported. Figures representing different scenarios have been used to display the numerical results. Mechanical damage value, ramp-time heat parameter and beam thickness are all reported to have a substantial influence on all of the examined functions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Strain Analysis for Engineering Design
Journal of Strain Analysis for Engineering Design 工程技术-材料科学:表征与测试
CiteScore
3.50
自引率
6.20%
发文量
25
审稿时长
>12 weeks
期刊介绍: The Journal of Strain Analysis for Engineering Design provides a forum for work relating to the measurement and analysis of strain that is appropriate to engineering design and practice. "Since launching in 1965, The Journal of Strain Analysis has been a collegiate effort, dedicated to providing exemplary service to our authors. We welcome contributions related to analytical, experimental, and numerical techniques for the analysis and/or measurement of stress and/or strain, or studies of relevant material properties and failure modes. Our international Editorial Board contains experts in all of these fields and is keen to encourage papers on novel techniques and innovative applications." Professor Eann Patterson - University of Liverpool, UK This journal is a member of the Committee on Publication Ethics (COPE).
期刊最新文献
Anti-plane analysis of a crack terminating at interface of the isotropic half-planes bonded to intact orthotropic layers Compressive performance of paper honeycomb core layer with double-hole in cell walls A novel multiaxial fatigue life prediction model based on the critical plane theory and machine-learning method Non-linear analysis of the flexural-torsional stability of slender tropical glulam beams Approximate methods for contact problems involving beams
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1