{"title":"fsm的高效符号状态遍历懒群筛选","authors":"H. Higuchi, F. Somenzi","doi":"10.1109/ICCAD.1999.810619","DOIUrl":null,"url":null,"abstract":"Proposes lazy group sifting for dynamic variable reordering during state traversal of finite state machines (FSMs). The proposed method relaxes the idea of pairwise grouping of the present state variables and their corresponding next state variables. This is done to produce better variable orderings during image computation without causing BDD (binary decision diagram) size blowup in the substitution of next state variables with present state variables at the end of image computation. Experimental results show that our approach is more robust in state traversal than the approaches that either unconditionally group variable pairs or never group them.","PeriodicalId":6414,"journal":{"name":"1999 IEEE/ACM International Conference on Computer-Aided Design. Digest of Technical Papers (Cat. No.99CH37051)","volume":"11 1","pages":"45-49"},"PeriodicalIF":0.0000,"publicationDate":"1999-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"22","resultStr":"{\"title\":\"Lazy group sifting for efficient symbolic state traversal of FSMs\",\"authors\":\"H. Higuchi, F. Somenzi\",\"doi\":\"10.1109/ICCAD.1999.810619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Proposes lazy group sifting for dynamic variable reordering during state traversal of finite state machines (FSMs). The proposed method relaxes the idea of pairwise grouping of the present state variables and their corresponding next state variables. This is done to produce better variable orderings during image computation without causing BDD (binary decision diagram) size blowup in the substitution of next state variables with present state variables at the end of image computation. Experimental results show that our approach is more robust in state traversal than the approaches that either unconditionally group variable pairs or never group them.\",\"PeriodicalId\":6414,\"journal\":{\"name\":\"1999 IEEE/ACM International Conference on Computer-Aided Design. Digest of Technical Papers (Cat. No.99CH37051)\",\"volume\":\"11 1\",\"pages\":\"45-49\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1999-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"22\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"1999 IEEE/ACM International Conference on Computer-Aided Design. Digest of Technical Papers (Cat. No.99CH37051)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCAD.1999.810619\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"1999 IEEE/ACM International Conference on Computer-Aided Design. Digest of Technical Papers (Cat. No.99CH37051)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCAD.1999.810619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 22

摘要

针对有限状态机(FSMs)状态遍历过程中动态变量重排序问题,提出了惰性群筛选方法。该方法放宽了当前状态变量和对应的下一个状态变量的成对分组的思想。这样做是为了在图像计算期间产生更好的变量排序,而不会在图像计算结束时用当前状态变量替换下一个状态变量时导致BDD(二进制决策图)大小爆炸。实验结果表明,该方法在状态遍历方面比无条件分组和不分组的方法具有更强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Lazy group sifting for efficient symbolic state traversal of FSMs
Proposes lazy group sifting for dynamic variable reordering during state traversal of finite state machines (FSMs). The proposed method relaxes the idea of pairwise grouping of the present state variables and their corresponding next state variables. This is done to produce better variable orderings during image computation without causing BDD (binary decision diagram) size blowup in the substitution of next state variables with present state variables at the end of image computation. Experimental results show that our approach is more robust in state traversal than the approaches that either unconditionally group variable pairs or never group them.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Least fixpoint approximations for reachability analysis Performance optimization using separator sets A scalable substrate noise coupling model for mixed-signal ICs JMTP: an architecture for exploiting concurrency in embedded Java applications with real-time considerations Electromagnetic parasitic extraction via a multipole method with hierarchical refinement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1