{"title":"湍流圆形自由射流混合过渡中的相干结构和相关场","authors":"B. Krohn, Sunming Qin, V. Petrov, A. Manera","doi":"10.1115/FEDSM2018-83280","DOIUrl":null,"url":null,"abstract":"Turbulent free jets attracted the focus of many scientists within the past century regarding the understanding of mass- and momentum transport in the turbulent shear field, especially in the near-field and the self-similar region. Recent investigations attempt to understand the intermediate fields, called the mixing transition or ‘the route to self-similarity’. An apparent gap is recognized in light of this mixing transition, with two main conjectures being put forth. Firstly the flow will always asymptotically reach a fully self-similar state if boundary conditions permit. The second proposes partial and local self-similarity within the mixing transition. We address the later with an experimental investigation of the intermediate field turbulence dynamics in a non-confined free jet with a nozzle diameter of 12.7 mm and an outer scale Reynolds number of 15,000. High speed Particle Image Velocimetry (PIV) is used to record the velocity fields with a final spatial resolution of 194 × 194 μm2. The analysis focuses on higher order moments and two-point correlations of velocity variances in space and time. We observed local self-similarity in the measured correlation fields. Coherent structures are present within the near-field where the turbulent energy spectrum cascades along a dissipative slope. Towards the transition region, the spectrum smoothly transforms to a viscous cascade, as it is commonly observed in the self-similar region.","PeriodicalId":23480,"journal":{"name":"Volume 1: Flow Manipulation and Active Control; Bio-Inspired Fluid Mechanics; Boundary Layer and High-Speed Flows; Fluids Engineering Education; Transport Phenomena in Energy Conversion and Mixing; Turbulent Flows; Vortex Dynamics; DNS/LES and Hybrid RANS/LES Methods; Fluid Structure Interaction; Fl","volume":"43 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Coherent Structures and Correlation Fields in the Mixing Transition of a Turbulent Round Free Jet\",\"authors\":\"B. Krohn, Sunming Qin, V. Petrov, A. Manera\",\"doi\":\"10.1115/FEDSM2018-83280\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Turbulent free jets attracted the focus of many scientists within the past century regarding the understanding of mass- and momentum transport in the turbulent shear field, especially in the near-field and the self-similar region. Recent investigations attempt to understand the intermediate fields, called the mixing transition or ‘the route to self-similarity’. An apparent gap is recognized in light of this mixing transition, with two main conjectures being put forth. Firstly the flow will always asymptotically reach a fully self-similar state if boundary conditions permit. The second proposes partial and local self-similarity within the mixing transition. We address the later with an experimental investigation of the intermediate field turbulence dynamics in a non-confined free jet with a nozzle diameter of 12.7 mm and an outer scale Reynolds number of 15,000. High speed Particle Image Velocimetry (PIV) is used to record the velocity fields with a final spatial resolution of 194 × 194 μm2. The analysis focuses on higher order moments and two-point correlations of velocity variances in space and time. We observed local self-similarity in the measured correlation fields. Coherent structures are present within the near-field where the turbulent energy spectrum cascades along a dissipative slope. Towards the transition region, the spectrum smoothly transforms to a viscous cascade, as it is commonly observed in the self-similar region.\",\"PeriodicalId\":23480,\"journal\":{\"name\":\"Volume 1: Flow Manipulation and Active Control; Bio-Inspired Fluid Mechanics; Boundary Layer and High-Speed Flows; Fluids Engineering Education; Transport Phenomena in Energy Conversion and Mixing; Turbulent Flows; Vortex Dynamics; DNS/LES and Hybrid RANS/LES Methods; Fluid Structure Interaction; Fl\",\"volume\":\"43 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 1: Flow Manipulation and Active Control; Bio-Inspired Fluid Mechanics; Boundary Layer and High-Speed Flows; Fluids Engineering Education; Transport Phenomena in Energy Conversion and Mixing; Turbulent Flows; Vortex Dynamics; DNS/LES and Hybrid RANS/LES Methods; Fluid Structure Interaction; Fl\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/FEDSM2018-83280\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Flow Manipulation and Active Control; Bio-Inspired Fluid Mechanics; Boundary Layer and High-Speed Flows; Fluids Engineering Education; Transport Phenomena in Energy Conversion and Mixing; Turbulent Flows; Vortex Dynamics; DNS/LES and Hybrid RANS/LES Methods; Fluid Structure Interaction; Fl","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/FEDSM2018-83280","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在过去的一个世纪里,湍流自由射流吸引了许多科学家对湍流剪切场中质量和动量输运的理解,特别是在近场和自相似区域。最近的研究试图理解中间领域,称为混合过渡或“自相似之路”。根据这种混合转变,人们认识到一个明显的差距,并提出了两个主要的猜想。首先,在边界条件允许的情况下,流动总是渐近地达到完全自相似状态。第二种方法提出混合过渡中的部分和局部自相似性。我们对喷嘴直径为12.7 mm、外尺度雷诺数为15,000的非受限自由射流的中间场湍流动力学进行了实验研究。采用高速粒子图像测速仪(PIV)记录速度场,最终空间分辨率为194 × 194 μm2。分析的重点是速度方差在空间和时间上的高阶矩和两点相关。我们在测量的相关场中观察到局部自相似性。在湍流能谱沿耗散斜率级联的近场内存在相干结构。在过渡区,光谱平滑地转变为粘滞级联,就像在自相似区通常观察到的那样。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Coherent Structures and Correlation Fields in the Mixing Transition of a Turbulent Round Free Jet
Turbulent free jets attracted the focus of many scientists within the past century regarding the understanding of mass- and momentum transport in the turbulent shear field, especially in the near-field and the self-similar region. Recent investigations attempt to understand the intermediate fields, called the mixing transition or ‘the route to self-similarity’. An apparent gap is recognized in light of this mixing transition, with two main conjectures being put forth. Firstly the flow will always asymptotically reach a fully self-similar state if boundary conditions permit. The second proposes partial and local self-similarity within the mixing transition. We address the later with an experimental investigation of the intermediate field turbulence dynamics in a non-confined free jet with a nozzle diameter of 12.7 mm and an outer scale Reynolds number of 15,000. High speed Particle Image Velocimetry (PIV) is used to record the velocity fields with a final spatial resolution of 194 × 194 μm2. The analysis focuses on higher order moments and two-point correlations of velocity variances in space and time. We observed local self-similarity in the measured correlation fields. Coherent structures are present within the near-field where the turbulent energy spectrum cascades along a dissipative slope. Towards the transition region, the spectrum smoothly transforms to a viscous cascade, as it is commonly observed in the self-similar region.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experimental Investigation of a Flapping Motion Downstream of a Backward Facing Step Experimental Study on Modeled Caudal Fins Propelling by Elastic Deformation Simulation of Coalescence and Breakup of Dispersed Water Droplets in Continuous Oil Phase Multi-Objective Optimization on Inlet Pipe of a Vertical Inline Pump Based on Genetic Algorithm and Artificial Neural Network Turbulent Flow Characteristics Over Offset Wall Confined Columns in a Channel at Low Reynolds Numbers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1