Radhika Dharmadhikari, Padmakar Parihar, Annu Jacob
{"title":"建造经济实惠的大型光学近红外望远镜(I):处理分段式主镜的另一种方法","authors":"Radhika Dharmadhikari, Padmakar Parihar, Annu Jacob","doi":"10.1007/s10686-023-09900-0","DOIUrl":null,"url":null,"abstract":"<div><p>The use of innovative ideas and the latest technology have undoubtedly brought down telescope costs substantially. However, there are still ways to further reduce the cost of optical ground-based telescopes and make them affordable to much larger and wide spread astronomical communities. In this and subsequent papers we are presenting our studies carried out towards building affordable mid-size telescopes of 4.0-6.0m in size. In the present era, segmented mirror technology has become the first choice for building moderate to large-size telescopes. In any Segmented Mirror Telescope (SMT) the most important part is its primary mirror control system (M1CS). The conventional M1CS is based on edge sensors and actuators, but such a system introduces many design and implementation complexities. In this paper, we propose to make use of an Off-axis Alignment and Phasing System (OAPS), which is an active mirror kind of control system working in real time to maintain the figure of a segmented primary mirror without the use of edge-sensors. The alignment and phasing system which is an integral part of any segmented telescope can be used in the real time at the off-axis. Through extensive simulations we have explored the feasibility of using an OAPS for co-alignment, co-focusing as well as co-phasing of segmented mirror telescopes. From our simulations we find that the co-alignment and co-focusing of the segments can be achieved with a guide star as faint as 16-18<span>\\(^{th}\\)</span> magnitude. This implies that seeing limited performance for any segmented telescope can be easily accomplished without use of a complex edge sensor based control system. Whereas, to attain diffraction limited performance, mirror segments need to be co-phased with an accuracy of few tens of nanometers. In our simulations we have used a dispersed fringe sensor based phasing scheme, which can effectively work up to guide stars of 14<span>\\(^{th}\\)</span> magnitude.</p></div>","PeriodicalId":551,"journal":{"name":"Experimental Astronomy","volume":"56 2-3","pages":"569 - 604"},"PeriodicalIF":2.7000,"publicationDate":"2023-07-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Building a large affordable optical-NIR telescope (I): an alternate way to handle segmented primary mirror\",\"authors\":\"Radhika Dharmadhikari, Padmakar Parihar, Annu Jacob\",\"doi\":\"10.1007/s10686-023-09900-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The use of innovative ideas and the latest technology have undoubtedly brought down telescope costs substantially. However, there are still ways to further reduce the cost of optical ground-based telescopes and make them affordable to much larger and wide spread astronomical communities. In this and subsequent papers we are presenting our studies carried out towards building affordable mid-size telescopes of 4.0-6.0m in size. In the present era, segmented mirror technology has become the first choice for building moderate to large-size telescopes. In any Segmented Mirror Telescope (SMT) the most important part is its primary mirror control system (M1CS). The conventional M1CS is based on edge sensors and actuators, but such a system introduces many design and implementation complexities. In this paper, we propose to make use of an Off-axis Alignment and Phasing System (OAPS), which is an active mirror kind of control system working in real time to maintain the figure of a segmented primary mirror without the use of edge-sensors. The alignment and phasing system which is an integral part of any segmented telescope can be used in the real time at the off-axis. Through extensive simulations we have explored the feasibility of using an OAPS for co-alignment, co-focusing as well as co-phasing of segmented mirror telescopes. From our simulations we find that the co-alignment and co-focusing of the segments can be achieved with a guide star as faint as 16-18<span>\\\\(^{th}\\\\)</span> magnitude. This implies that seeing limited performance for any segmented telescope can be easily accomplished without use of a complex edge sensor based control system. Whereas, to attain diffraction limited performance, mirror segments need to be co-phased with an accuracy of few tens of nanometers. In our simulations we have used a dispersed fringe sensor based phasing scheme, which can effectively work up to guide stars of 14<span>\\\\(^{th}\\\\)</span> magnitude.</p></div>\",\"PeriodicalId\":551,\"journal\":{\"name\":\"Experimental Astronomy\",\"volume\":\"56 2-3\",\"pages\":\"569 - 604\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2023-07-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Experimental Astronomy\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s10686-023-09900-0\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Experimental Astronomy","FirstCategoryId":"101","ListUrlMain":"https://link.springer.com/article/10.1007/s10686-023-09900-0","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Building a large affordable optical-NIR telescope (I): an alternate way to handle segmented primary mirror
The use of innovative ideas and the latest technology have undoubtedly brought down telescope costs substantially. However, there are still ways to further reduce the cost of optical ground-based telescopes and make them affordable to much larger and wide spread astronomical communities. In this and subsequent papers we are presenting our studies carried out towards building affordable mid-size telescopes of 4.0-6.0m in size. In the present era, segmented mirror technology has become the first choice for building moderate to large-size telescopes. In any Segmented Mirror Telescope (SMT) the most important part is its primary mirror control system (M1CS). The conventional M1CS is based on edge sensors and actuators, but such a system introduces many design and implementation complexities. In this paper, we propose to make use of an Off-axis Alignment and Phasing System (OAPS), which is an active mirror kind of control system working in real time to maintain the figure of a segmented primary mirror without the use of edge-sensors. The alignment and phasing system which is an integral part of any segmented telescope can be used in the real time at the off-axis. Through extensive simulations we have explored the feasibility of using an OAPS for co-alignment, co-focusing as well as co-phasing of segmented mirror telescopes. From our simulations we find that the co-alignment and co-focusing of the segments can be achieved with a guide star as faint as 16-18\(^{th}\) magnitude. This implies that seeing limited performance for any segmented telescope can be easily accomplished without use of a complex edge sensor based control system. Whereas, to attain diffraction limited performance, mirror segments need to be co-phased with an accuracy of few tens of nanometers. In our simulations we have used a dispersed fringe sensor based phasing scheme, which can effectively work up to guide stars of 14\(^{th}\) magnitude.
期刊介绍:
Many new instruments for observing astronomical objects at a variety of wavelengths have been and are continually being developed. Furthermore, a vast amount of effort is being put into the development of new techniques for data analysis in order to cope with great streams of data collected by these instruments.
Experimental Astronomy acts as a medium for the publication of papers of contemporary scientific interest on astrophysical instrumentation and methods necessary for the conduct of astronomy at all wavelength fields.
Experimental Astronomy publishes full-length articles, research letters and reviews on developments in detection techniques, instruments, and data analysis and image processing techniques. Occasional special issues are published, giving an in-depth presentation of the instrumentation and/or analysis connected with specific projects, such as satellite experiments or ground-based telescopes, or of specialized techniques.