高温下Inconel 718合金起皱极限预测的实验与有限元结合方法

IF 1.4 4区 工程技术 Q3 ENGINEERING, MECHANICAL Journal of Strain Analysis for Engineering Design Pub Date : 2021-08-30 DOI:10.1177/03093247211043098
Gauri Mahalle, N. Kotkunde, Amit Kumar Gupta, Swadesh Kumar Singh
{"title":"高温下Inconel 718合金起皱极限预测的实验与有限元结合方法","authors":"Gauri Mahalle, N. Kotkunde, Amit Kumar Gupta, Swadesh Kumar Singh","doi":"10.1177/03093247211043098","DOIUrl":null,"url":null,"abstract":"Wrinkling is generally induced because of metal instability and considered as an undesirable defect in sheet metal forming processes. Wrinkling leads to severe influence on functional requirements and aesthetic appeal of final component. Thus, the present research is mainly dedicated on the experimental and numerical analysis for wrinkling behavior prediction of Inconel 718 alloy at elevated temperature conditions. Initially, Yoshida buckling tests (YBT) have been conducted to investigate wrinkling tendencies of Inconel 718 alloy from room temperature (RT) to 600°C by an interval of 200°C. Subsequently, Finite Element (FE) analysis of YBT has been performed to analyze post buckling behavior. Critical strain values at onset of wrinkling are determined and strain based wrinkling limit curves (ε-WLCs) are plotted at different temperatures. In-plane principal strains are transferred to effective plastic strain (EPS) versus triaxiality (η) space to differentiate the transformation between safe and wrinkling instability. Finally, complete forming behavior of alloy is represented by means of fracture, forming, and wrinkling limit curves. The gap between forming and wrinkling limit curves at elevated temperature is ∼1.5 times higher than that at room temperature.","PeriodicalId":50038,"journal":{"name":"Journal of Strain Analysis for Engineering Design","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2021-08-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An integrated experimental and finite element approach for wrinkling limit prediction of Inconel 718 alloy at elevated temperatures\",\"authors\":\"Gauri Mahalle, N. Kotkunde, Amit Kumar Gupta, Swadesh Kumar Singh\",\"doi\":\"10.1177/03093247211043098\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Wrinkling is generally induced because of metal instability and considered as an undesirable defect in sheet metal forming processes. Wrinkling leads to severe influence on functional requirements and aesthetic appeal of final component. Thus, the present research is mainly dedicated on the experimental and numerical analysis for wrinkling behavior prediction of Inconel 718 alloy at elevated temperature conditions. Initially, Yoshida buckling tests (YBT) have been conducted to investigate wrinkling tendencies of Inconel 718 alloy from room temperature (RT) to 600°C by an interval of 200°C. Subsequently, Finite Element (FE) analysis of YBT has been performed to analyze post buckling behavior. Critical strain values at onset of wrinkling are determined and strain based wrinkling limit curves (ε-WLCs) are plotted at different temperatures. In-plane principal strains are transferred to effective plastic strain (EPS) versus triaxiality (η) space to differentiate the transformation between safe and wrinkling instability. Finally, complete forming behavior of alloy is represented by means of fracture, forming, and wrinkling limit curves. The gap between forming and wrinkling limit curves at elevated temperature is ∼1.5 times higher than that at room temperature.\",\"PeriodicalId\":50038,\"journal\":{\"name\":\"Journal of Strain Analysis for Engineering Design\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2021-08-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Strain Analysis for Engineering Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/03093247211043098\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Strain Analysis for Engineering Design","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/03093247211043098","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 1

摘要

起皱通常是由于金属不稳定而引起的,被认为是钣金成形过程中不希望出现的缺陷。起皱严重影响成品的功能要求和美观性。因此,本研究主要进行了高温条件下Inconel 718合金起皱行为预测的实验和数值分析。首先,进行了吉田屈曲试验(YBT)来研究Inconel 718合金从室温(RT)到600°C间隔200°C的起皱趋势。随后,对YBT进行了有限元分析,分析了其屈曲后的行为。确定了起皱时的临界应变值,绘制了不同温度下基于应变的起皱极限曲线(ε- wlc)。将面内主应变转换为有效塑性应变(EPS)与三轴(η)空间,以区分安全失稳与起皱失稳之间的转变。最后,用断裂、成形和起皱极限曲线表示合金的完整成形行为。在高温下,成形和起皱极限曲线之间的间隙比室温下的间隙大1.5倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An integrated experimental and finite element approach for wrinkling limit prediction of Inconel 718 alloy at elevated temperatures
Wrinkling is generally induced because of metal instability and considered as an undesirable defect in sheet metal forming processes. Wrinkling leads to severe influence on functional requirements and aesthetic appeal of final component. Thus, the present research is mainly dedicated on the experimental and numerical analysis for wrinkling behavior prediction of Inconel 718 alloy at elevated temperature conditions. Initially, Yoshida buckling tests (YBT) have been conducted to investigate wrinkling tendencies of Inconel 718 alloy from room temperature (RT) to 600°C by an interval of 200°C. Subsequently, Finite Element (FE) analysis of YBT has been performed to analyze post buckling behavior. Critical strain values at onset of wrinkling are determined and strain based wrinkling limit curves (ε-WLCs) are plotted at different temperatures. In-plane principal strains are transferred to effective plastic strain (EPS) versus triaxiality (η) space to differentiate the transformation between safe and wrinkling instability. Finally, complete forming behavior of alloy is represented by means of fracture, forming, and wrinkling limit curves. The gap between forming and wrinkling limit curves at elevated temperature is ∼1.5 times higher than that at room temperature.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Strain Analysis for Engineering Design
Journal of Strain Analysis for Engineering Design 工程技术-材料科学:表征与测试
CiteScore
3.50
自引率
6.20%
发文量
25
审稿时长
>12 weeks
期刊介绍: The Journal of Strain Analysis for Engineering Design provides a forum for work relating to the measurement and analysis of strain that is appropriate to engineering design and practice. "Since launching in 1965, The Journal of Strain Analysis has been a collegiate effort, dedicated to providing exemplary service to our authors. We welcome contributions related to analytical, experimental, and numerical techniques for the analysis and/or measurement of stress and/or strain, or studies of relevant material properties and failure modes. Our international Editorial Board contains experts in all of these fields and is keen to encourage papers on novel techniques and innovative applications." Professor Eann Patterson - University of Liverpool, UK This journal is a member of the Committee on Publication Ethics (COPE).
期刊最新文献
Anti-plane analysis of a crack terminating at interface of the isotropic half-planes bonded to intact orthotropic layers Compressive performance of paper honeycomb core layer with double-hole in cell walls A novel multiaxial fatigue life prediction model based on the critical plane theory and machine-learning method Non-linear analysis of the flexural-torsional stability of slender tropical glulam beams Approximate methods for contact problems involving beams
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1