{"title":"带圆形发射体的横向串联PNP晶体管稳压器γ辐射效应和退火的LTspice模拟模型","authors":"V. Vukic","doi":"10.33180/infmidem2019.304","DOIUrl":null,"url":null,"abstract":"The aim of this paper was to determine the reasons for a complex radiation response of the commercial-off-the-shelf LM2940CT5 low-dropout voltage regulator. Examination of this circuit in a gamma-radiation environment disqualified its use when operated with relatively high output currents, while its radiation tolerance was satisfactory when load current was approximately one-tenth (or lower) of the nominal value. In order to obtain a more thorough insight into the radiation response of this integrated circuit, a detailed SPICE model was developed. This model enabled mutual comparison of the influence of serial and driver PNP power transistor parameters: forward emitter current gain, knee current and emitter resistance. The serial lateral PNP power transistor with round emitters was identified as the weakest element that crucially affected the entire circuit radiation tolerance. The effects of gamma-radiation were examined for total doses up to 500 Gy followed by three sequences of isothermal annealing. Detailed characteristics of Beta(Ic) were procured for four different kinds of bias and load conditions during irradiation. The emitter resistance increase of the serial power transistor was a primary reason for the low radiation tolerance of the entire voltage regulator; it was much more influential than the perceived decline of the PNP power transistor forward emitter current gain. The influence of bias and load conditions were analysed with buildup of interface traps and the oxide-trapped charge, which affected the radiation and post-irradiation response of the serial power transistor.","PeriodicalId":56293,"journal":{"name":"Informacije Midem-Journal of Microelectronics Electronic Components and Materials","volume":"7 1","pages":"153-166"},"PeriodicalIF":0.6000,"publicationDate":"2019-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"An LTspice Simulation Model of Gamma-radiation Effects and Annealing in a Voltage Regulator With a Lateral Serial PNP Transistor With Round Emitters\",\"authors\":\"V. Vukic\",\"doi\":\"10.33180/infmidem2019.304\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The aim of this paper was to determine the reasons for a complex radiation response of the commercial-off-the-shelf LM2940CT5 low-dropout voltage regulator. Examination of this circuit in a gamma-radiation environment disqualified its use when operated with relatively high output currents, while its radiation tolerance was satisfactory when load current was approximately one-tenth (or lower) of the nominal value. In order to obtain a more thorough insight into the radiation response of this integrated circuit, a detailed SPICE model was developed. This model enabled mutual comparison of the influence of serial and driver PNP power transistor parameters: forward emitter current gain, knee current and emitter resistance. The serial lateral PNP power transistor with round emitters was identified as the weakest element that crucially affected the entire circuit radiation tolerance. The effects of gamma-radiation were examined for total doses up to 500 Gy followed by three sequences of isothermal annealing. Detailed characteristics of Beta(Ic) were procured for four different kinds of bias and load conditions during irradiation. The emitter resistance increase of the serial power transistor was a primary reason for the low radiation tolerance of the entire voltage regulator; it was much more influential than the perceived decline of the PNP power transistor forward emitter current gain. The influence of bias and load conditions were analysed with buildup of interface traps and the oxide-trapped charge, which affected the radiation and post-irradiation response of the serial power transistor.\",\"PeriodicalId\":56293,\"journal\":{\"name\":\"Informacije Midem-Journal of Microelectronics Electronic Components and Materials\",\"volume\":\"7 1\",\"pages\":\"153-166\"},\"PeriodicalIF\":0.6000,\"publicationDate\":\"2019-12-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Informacije Midem-Journal of Microelectronics Electronic Components and Materials\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.33180/infmidem2019.304\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informacije Midem-Journal of Microelectronics Electronic Components and Materials","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.33180/infmidem2019.304","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
An LTspice Simulation Model of Gamma-radiation Effects and Annealing in a Voltage Regulator With a Lateral Serial PNP Transistor With Round Emitters
The aim of this paper was to determine the reasons for a complex radiation response of the commercial-off-the-shelf LM2940CT5 low-dropout voltage regulator. Examination of this circuit in a gamma-radiation environment disqualified its use when operated with relatively high output currents, while its radiation tolerance was satisfactory when load current was approximately one-tenth (or lower) of the nominal value. In order to obtain a more thorough insight into the radiation response of this integrated circuit, a detailed SPICE model was developed. This model enabled mutual comparison of the influence of serial and driver PNP power transistor parameters: forward emitter current gain, knee current and emitter resistance. The serial lateral PNP power transistor with round emitters was identified as the weakest element that crucially affected the entire circuit radiation tolerance. The effects of gamma-radiation were examined for total doses up to 500 Gy followed by three sequences of isothermal annealing. Detailed characteristics of Beta(Ic) were procured for four different kinds of bias and load conditions during irradiation. The emitter resistance increase of the serial power transistor was a primary reason for the low radiation tolerance of the entire voltage regulator; it was much more influential than the perceived decline of the PNP power transistor forward emitter current gain. The influence of bias and load conditions were analysed with buildup of interface traps and the oxide-trapped charge, which affected the radiation and post-irradiation response of the serial power transistor.
期刊介绍:
Informacije MIDEM publishes original research papers in the fields of microelectronics, electronic components and materials. Review papers are published upon invitation only. Scientific novelty and potential interest for a wider spectrum of readers is desired. Authors are encouraged to provide as much detail as possible for others to be able to replicate their results. Therefore, there is no page limit, provided that the text is concise and comprehensive, and any data that does not fit within a classical manuscript can be added as supplementary material.
Topics of interest include:
Microelectronics,
Semiconductor devices,
Nanotechnology,
Electronic circuits and devices,
Electronic sensors and actuators,
Microelectromechanical systems (MEMS),
Medical electronics,
Bioelectronics,
Power electronics,
Embedded system electronics,
System control electronics,
Signal processing,
Microwave and millimetre-wave techniques,
Wireless and optical communications,
Antenna technology,
Optoelectronics,
Photovoltaics,
Ceramic materials for electronic devices,
Thick and thin film materials for electronic devices.