注意移动:用左右运动图像开发脑机接口游戏

Inf. Comput. Pub Date : 2023-06-21 DOI:10.3390/info14070354
Georgios Prapas, Kosmas Glavas, Katerina D. Tzimourta, A. Tzallas, M. Tsipouras
{"title":"注意移动:用左右运动图像开发脑机接口游戏","authors":"Georgios Prapas, Kosmas Glavas, Katerina D. Tzimourta, A. Tzallas, M. Tsipouras","doi":"10.3390/info14070354","DOIUrl":null,"url":null,"abstract":"Brain-computer interfaces (BCIs) are becoming an increasingly popular technology, used in a variety of fields such as medical, gaming, and lifestyle. This paper describes a 3D non-invasive BCI game that uses a Muse 2 EEG headband to acquire electroencephalogram (EEG) data and OpenViBE platform for processing the signals and classifying them into three different mental states: left and right motor imagery and eye blink. The game is developed to assess user adjustment and improvement in BCI environment after training. The classification algorithm used is Multi-Layer Perceptron (MLP), with 96.94% accuracy. A total of 33 subjects participated in the experiment and successfully controlled an avatar using mental commands to collect coins. The online metrics employed for this BCI system are the average game score, the average number of clusters and average user improvement.","PeriodicalId":13622,"journal":{"name":"Inf. Comput.","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2023-06-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Mind the Move: Developing a Brain-Computer Interface Game with Left-Right Motor Imagery\",\"authors\":\"Georgios Prapas, Kosmas Glavas, Katerina D. Tzimourta, A. Tzallas, M. Tsipouras\",\"doi\":\"10.3390/info14070354\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Brain-computer interfaces (BCIs) are becoming an increasingly popular technology, used in a variety of fields such as medical, gaming, and lifestyle. This paper describes a 3D non-invasive BCI game that uses a Muse 2 EEG headband to acquire electroencephalogram (EEG) data and OpenViBE platform for processing the signals and classifying them into three different mental states: left and right motor imagery and eye blink. The game is developed to assess user adjustment and improvement in BCI environment after training. The classification algorithm used is Multi-Layer Perceptron (MLP), with 96.94% accuracy. A total of 33 subjects participated in the experiment and successfully controlled an avatar using mental commands to collect coins. The online metrics employed for this BCI system are the average game score, the average number of clusters and average user improvement.\",\"PeriodicalId\":13622,\"journal\":{\"name\":\"Inf. Comput.\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Inf. Comput.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/info14070354\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Inf. Comput.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/info14070354","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

脑机接口(bci)正在成为一种日益流行的技术,用于各种领域,如医疗,游戏和生活方式。本文介绍了一种3D无创脑机接口游戏,该游戏使用Muse 2脑电图头带获取脑电图数据,并使用OpenViBE平台对信号进行处理,并将其分为三种不同的精神状态:左右运动意象和眼睛闪烁。该游戏是为了评估用户在训练后对BCI环境的调整和改进。使用的分类算法是多层感知器(MLP),准确率为96.94%。共有33名受试者参加了这项实验,并成功地通过心理命令控制了一个虚拟角色来收集硬币。这个BCI系统使用的在线指标是平均游戏分数,平均集群数量和平均用户改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Mind the Move: Developing a Brain-Computer Interface Game with Left-Right Motor Imagery
Brain-computer interfaces (BCIs) are becoming an increasingly popular technology, used in a variety of fields such as medical, gaming, and lifestyle. This paper describes a 3D non-invasive BCI game that uses a Muse 2 EEG headband to acquire electroencephalogram (EEG) data and OpenViBE platform for processing the signals and classifying them into three different mental states: left and right motor imagery and eye blink. The game is developed to assess user adjustment and improvement in BCI environment after training. The classification algorithm used is Multi-Layer Perceptron (MLP), with 96.94% accuracy. A total of 33 subjects participated in the experiment and successfully controlled an avatar using mental commands to collect coins. The online metrics employed for this BCI system are the average game score, the average number of clusters and average user improvement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Traceable Constant-Size Multi-authority Credentials Pspace-Completeness of the Temporal Logic of Sub-Intervals and Suffixes Employee Productivity Assessment Using Fuzzy Inference System Correction of Threshold Determination in Rapid-Guessing Behaviour Detection Combining Classifiers for Deep Learning Mask Face Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1