不稳定mCherry荧光蛋白在酿酒酵母菌模型中的应用

Yu Chyuan Heng , Jee Loon Foo
{"title":"不稳定mCherry荧光蛋白在酿酒酵母菌模型中的应用","authors":"Yu Chyuan Heng ,&nbsp;Jee Loon Foo","doi":"10.1016/j.biotno.2022.12.001","DOIUrl":null,"url":null,"abstract":"<div><p>Fluorescent proteins are widely used molecular reporters in studying gene expression and subcellular protein localization. To enable the monitoring of transient cellular events in the model yeast <em>Saccharomyces cerevisiae</em>, destabilized green and cyan fluorescent proteins have been constructed. However, their co-utilization is limited by an overlap in their excitation and emission spectra. Although red fluorescent protein is compatible with both green and cyan fluorescent proteins with respect to spectra resolution, a destabilized red fluorescent protein is yet to be constructed for applications in <em>S. cerevisiae</em>. To realize this, we adopted a degron-fusion strategy to prompt destabilization of red fluorescent protein. Specifically, we fused two degrons derived from Cln2, a G<sub>1</sub>-specific cyclin that mediates cell cycle transition, to the N- or C-terminus of mCherry to generate four destabilized fluorescent proteins that are soluble and functional in <em>S</em>. <em>cerevisiae</em>. Importantly, the four mCherry fluorescent proteins are highly differential with regards to fluorescence half-life and intensity, which provides a greater choice of tools available for the study of dynamic gene expression and transient cellular processes in the model yeast.</p></div>","PeriodicalId":100186,"journal":{"name":"Biotechnology Notes","volume":"3 ","pages":"Pages 108-112"},"PeriodicalIF":0.0000,"publicationDate":"2022-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2665906922000186/pdfft?md5=df705722db51df9e97bca5a8eb9484d7&pid=1-s2.0-S2665906922000186-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Development of destabilized mCherry fluorescent proteins for applications in the model yeast Saccharomyces cerevisiae\",\"authors\":\"Yu Chyuan Heng ,&nbsp;Jee Loon Foo\",\"doi\":\"10.1016/j.biotno.2022.12.001\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Fluorescent proteins are widely used molecular reporters in studying gene expression and subcellular protein localization. To enable the monitoring of transient cellular events in the model yeast <em>Saccharomyces cerevisiae</em>, destabilized green and cyan fluorescent proteins have been constructed. However, their co-utilization is limited by an overlap in their excitation and emission spectra. Although red fluorescent protein is compatible with both green and cyan fluorescent proteins with respect to spectra resolution, a destabilized red fluorescent protein is yet to be constructed for applications in <em>S. cerevisiae</em>. To realize this, we adopted a degron-fusion strategy to prompt destabilization of red fluorescent protein. Specifically, we fused two degrons derived from Cln2, a G<sub>1</sub>-specific cyclin that mediates cell cycle transition, to the N- or C-terminus of mCherry to generate four destabilized fluorescent proteins that are soluble and functional in <em>S</em>. <em>cerevisiae</em>. Importantly, the four mCherry fluorescent proteins are highly differential with regards to fluorescence half-life and intensity, which provides a greater choice of tools available for the study of dynamic gene expression and transient cellular processes in the model yeast.</p></div>\",\"PeriodicalId\":100186,\"journal\":{\"name\":\"Biotechnology Notes\",\"volume\":\"3 \",\"pages\":\"Pages 108-112\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2665906922000186/pdfft?md5=df705722db51df9e97bca5a8eb9484d7&pid=1-s2.0-S2665906922000186-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biotechnology Notes\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2665906922000186\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biotechnology Notes","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2665906922000186","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

荧光蛋白是广泛应用于研究基因表达和亚细胞蛋白定位的分子报告蛋白。为了能够监测模型酵母的瞬时细胞事件,构建了不稳定的绿色和青色荧光蛋白。然而,它们的共利用受到激发和发射光谱重叠的限制。尽管红色荧光蛋白与绿色和青色荧光蛋白在光谱分辨率上是兼容的,但尚未构建一种不稳定的红色荧光蛋白用于酿酒酵母。为了实现这一点,我们采用了退化融合策略来促进红色荧光蛋白的不稳定。具体来说,我们将来自介导细胞周期转变的g1特异性周期蛋白Cln2的两个片段融合到mCherry的N端或c端,生成了四个可溶且在酿酒酵母中起作用的不稳定荧光蛋白。重要的是,这四种mCherry荧光蛋白在荧光半衰期和强度方面存在高度差异,这为模型酵母中动态基因表达和瞬时细胞过程的研究提供了更多的工具选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of destabilized mCherry fluorescent proteins for applications in the model yeast Saccharomyces cerevisiae

Fluorescent proteins are widely used molecular reporters in studying gene expression and subcellular protein localization. To enable the monitoring of transient cellular events in the model yeast Saccharomyces cerevisiae, destabilized green and cyan fluorescent proteins have been constructed. However, their co-utilization is limited by an overlap in their excitation and emission spectra. Although red fluorescent protein is compatible with both green and cyan fluorescent proteins with respect to spectra resolution, a destabilized red fluorescent protein is yet to be constructed for applications in S. cerevisiae. To realize this, we adopted a degron-fusion strategy to prompt destabilization of red fluorescent protein. Specifically, we fused two degrons derived from Cln2, a G1-specific cyclin that mediates cell cycle transition, to the N- or C-terminus of mCherry to generate four destabilized fluorescent proteins that are soluble and functional in S. cerevisiae. Importantly, the four mCherry fluorescent proteins are highly differential with regards to fluorescence half-life and intensity, which provides a greater choice of tools available for the study of dynamic gene expression and transient cellular processes in the model yeast.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.70
自引率
0.00%
发文量
0
期刊最新文献
Incorporating omics-based tools into endophytic fungal research Organ-on-chip technology: Opportunities and challenges Identifying Chlorella vulgaris and Chlorella sorokiniana as sustainable organisms to bioconvert glucosamine into valuable biomass Engineered microbial consortia for next-generation feedstocks Antibiotic susceptibility and virulence factors of bacterial species among cancer patients
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1