{"title":"氢退火在多金属层CMOS工艺薄栅氧化物中的作用","authors":"Y. Lee, R. Nachman, K. Seshan, D. Kau, N. Mielke","doi":"10.1109/RELPHY.2000.843912","DOIUrl":null,"url":null,"abstract":"This work investigated the impact of H/sub 2/ gas in the final annealing cycle of a 5-metal-layer CMOS process and its effect on MOS device behavior in the presence of Al/Ti metallization. The role of H/sub 2/ was evaluated with transistor electrical testing and with gate-oxide stressing, namely, bias-temperature and hot-carrier injection. Both electrical testing and stressing data showed no difference in device behavior when different external H/sub 2/% was used. However, some differences in PMOSFET bias-temp were observed when the annealing cycle was totally eliminated. Moreover, some differences were observed for devices with different metal coverage. This paper details the results and proposes a model to explain the observations.","PeriodicalId":6387,"journal":{"name":"2000 IEEE International Reliability Physics Symposium Proceedings. 38th Annual (Cat. No.00CH37059)","volume":"33 1","pages":"186-190"},"PeriodicalIF":0.0000,"publicationDate":"2000-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Role of hydrogen anneal in thin gate oxide for multi-metal-layer CMOS process\",\"authors\":\"Y. Lee, R. Nachman, K. Seshan, D. Kau, N. Mielke\",\"doi\":\"10.1109/RELPHY.2000.843912\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This work investigated the impact of H/sub 2/ gas in the final annealing cycle of a 5-metal-layer CMOS process and its effect on MOS device behavior in the presence of Al/Ti metallization. The role of H/sub 2/ was evaluated with transistor electrical testing and with gate-oxide stressing, namely, bias-temperature and hot-carrier injection. Both electrical testing and stressing data showed no difference in device behavior when different external H/sub 2/% was used. However, some differences in PMOSFET bias-temp were observed when the annealing cycle was totally eliminated. Moreover, some differences were observed for devices with different metal coverage. This paper details the results and proposes a model to explain the observations.\",\"PeriodicalId\":6387,\"journal\":{\"name\":\"2000 IEEE International Reliability Physics Symposium Proceedings. 38th Annual (Cat. No.00CH37059)\",\"volume\":\"33 1\",\"pages\":\"186-190\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2000 IEEE International Reliability Physics Symposium Proceedings. 38th Annual (Cat. No.00CH37059)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RELPHY.2000.843912\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 IEEE International Reliability Physics Symposium Proceedings. 38th Annual (Cat. No.00CH37059)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RELPHY.2000.843912","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Role of hydrogen anneal in thin gate oxide for multi-metal-layer CMOS process
This work investigated the impact of H/sub 2/ gas in the final annealing cycle of a 5-metal-layer CMOS process and its effect on MOS device behavior in the presence of Al/Ti metallization. The role of H/sub 2/ was evaluated with transistor electrical testing and with gate-oxide stressing, namely, bias-temperature and hot-carrier injection. Both electrical testing and stressing data showed no difference in device behavior when different external H/sub 2/% was used. However, some differences in PMOSFET bias-temp were observed when the annealing cycle was totally eliminated. Moreover, some differences were observed for devices with different metal coverage. This paper details the results and proposes a model to explain the observations.