在感应时生成-记忆像素智能成像- cnn

A. Bakambekova, O. Krestinskaya, A. James
{"title":"在感应时生成-记忆像素智能成像- cnn","authors":"A. Bakambekova, O. Krestinskaya, A. James","doi":"10.1109/NANO51122.2021.9514312","DOIUrl":null,"url":null,"abstract":"Gated Pixel Convolution Neural Network (Pix-eICNN) is a computationally intensive network that is useful for generating visual data. The prediction and generating pixels is a challenging but useful task for many fields such as forensics, machine vision and robotics. However, implementing PixeICNN in edge devices is a challenging task due to learning complexity and computational limits. In this paper, we present the design of neuro-memristive circuits for computing PixelCNN cells in analog domain as a coprocessor unit in edge devices. The architecture was designed using 180nm CMOS technology and carbon-chalcogenide memristive devices. On-chip area of the proposed architecture unit is 24.756mm2, while power depends on the size of the input image and the configuration of the overall network. The power required to generate the images sequentially is 154.336mW.","PeriodicalId":6791,"journal":{"name":"2021 IEEE 21st International Conference on Nanotechnology (NANO)","volume":"103 1","pages":"112-115"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Generate while Sensing - Intelligent Imaging with Memristive Pixel-CNN\",\"authors\":\"A. Bakambekova, O. Krestinskaya, A. James\",\"doi\":\"10.1109/NANO51122.2021.9514312\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Gated Pixel Convolution Neural Network (Pix-eICNN) is a computationally intensive network that is useful for generating visual data. The prediction and generating pixels is a challenging but useful task for many fields such as forensics, machine vision and robotics. However, implementing PixeICNN in edge devices is a challenging task due to learning complexity and computational limits. In this paper, we present the design of neuro-memristive circuits for computing PixelCNN cells in analog domain as a coprocessor unit in edge devices. The architecture was designed using 180nm CMOS technology and carbon-chalcogenide memristive devices. On-chip area of the proposed architecture unit is 24.756mm2, while power depends on the size of the input image and the configuration of the overall network. The power required to generate the images sequentially is 154.336mW.\",\"PeriodicalId\":6791,\"journal\":{\"name\":\"2021 IEEE 21st International Conference on Nanotechnology (NANO)\",\"volume\":\"103 1\",\"pages\":\"112-115\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE 21st International Conference on Nanotechnology (NANO)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/NANO51122.2021.9514312\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE 21st International Conference on Nanotechnology (NANO)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/NANO51122.2021.9514312","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

门控像素卷积神经网络(Pix-eICNN)是一种计算密集型网络,可用于生成视觉数据。对于取证、机器视觉和机器人等许多领域来说,预测和生成像素是一项具有挑战性但很有用的任务。然而,由于学习复杂性和计算限制,在边缘设备中实现PixeICNN是一项具有挑战性的任务。在本文中,我们提出了一种神经记忆电路的设计,用于在模拟域计算PixelCNN细胞作为边缘器件的协处理器单元。该架构采用180nm CMOS技术和碳硫系记忆器件设计。该架构单元的片上面积为24.756mm2,功耗取决于输入图像的大小和整体网络的配置。顺序生成图像所需的功率为154.336mW。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Generate while Sensing - Intelligent Imaging with Memristive Pixel-CNN
Gated Pixel Convolution Neural Network (Pix-eICNN) is a computationally intensive network that is useful for generating visual data. The prediction and generating pixels is a challenging but useful task for many fields such as forensics, machine vision and robotics. However, implementing PixeICNN in edge devices is a challenging task due to learning complexity and computational limits. In this paper, we present the design of neuro-memristive circuits for computing PixelCNN cells in analog domain as a coprocessor unit in edge devices. The architecture was designed using 180nm CMOS technology and carbon-chalcogenide memristive devices. On-chip area of the proposed architecture unit is 24.756mm2, while power depends on the size of the input image and the configuration of the overall network. The power required to generate the images sequentially is 154.336mW.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Copper-MWCNT Composite: A Solution to Breakdown in Copper Interconnects Si Nanopillar/SiGe Composite Structure for Thermally Managed Nano-devices Reservoir Computing System using Biomolecular Memristor Electrothermal Parameters of Graphene Nanoplatelets Films High-performance VOx-based memristors with ultralow switching voltages prepared at room temperature
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1