热电发电用丁烷多孔燃烧器的燃烧特性

IF 1.5 Q3 ENGINEERING, CHEMICAL Journal of Combustion Pub Date : 2015-03-31 DOI:10.1155/2015/121487
K. F. Mustafa, S. Abdullah, M. Z. Abdullah, K. Sopian
{"title":"热电发电用丁烷多孔燃烧器的燃烧特性","authors":"K. F. Mustafa, S. Abdullah, M. Z. Abdullah, K. Sopian","doi":"10.1155/2015/121487","DOIUrl":null,"url":null,"abstract":"The present study explores the utilization of a porous burner for thermoelectric power generation. The porous burner was tested with butane gas using two sets of configurations: single layer porcelain and a stacked-up double layer alumina and porcelain. Six PbSnTe thermoelectric (TE) modules with a total area of 54 cm2 were attached to the wall of the burner. Fins were also added to the cold side of the TE modules. Fuel-air equivalence ratio was varied between the blowoff and flashback limit and the corresponding temperature, current-voltage, and emissions were recorded. The stacked-up double layer negatively affected the combustion efficiency at an equivalence ratio of 0.20 to 0.42, but single layer porcelain shows diminishing trend in the equivalence ratio of 0.60 to 0.90. The surface temperature of a stacked-up porous media is considerably higher than the single layer. Carbon monoxide emission is independent for both porous media configurations, but moderate reduction was recorded for single layer porcelain at lean fuel-air equivalence ratio. Nitrogen oxides is insensitive in the lean fuel-air equivalence ratio for both configurations, even though slight reduction was observed in the rich region for single layer porcelain. Power output was found to be highly dependent on the temperature gradient.","PeriodicalId":44364,"journal":{"name":"Journal of Combustion","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2015-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"Combustion Characteristics of Butane Porous Burner for Thermoelectric Power Generation\",\"authors\":\"K. F. Mustafa, S. Abdullah, M. Z. Abdullah, K. Sopian\",\"doi\":\"10.1155/2015/121487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The present study explores the utilization of a porous burner for thermoelectric power generation. The porous burner was tested with butane gas using two sets of configurations: single layer porcelain and a stacked-up double layer alumina and porcelain. Six PbSnTe thermoelectric (TE) modules with a total area of 54 cm2 were attached to the wall of the burner. Fins were also added to the cold side of the TE modules. Fuel-air equivalence ratio was varied between the blowoff and flashback limit and the corresponding temperature, current-voltage, and emissions were recorded. The stacked-up double layer negatively affected the combustion efficiency at an equivalence ratio of 0.20 to 0.42, but single layer porcelain shows diminishing trend in the equivalence ratio of 0.60 to 0.90. The surface temperature of a stacked-up porous media is considerably higher than the single layer. Carbon monoxide emission is independent for both porous media configurations, but moderate reduction was recorded for single layer porcelain at lean fuel-air equivalence ratio. Nitrogen oxides is insensitive in the lean fuel-air equivalence ratio for both configurations, even though slight reduction was observed in the rich region for single layer porcelain. Power output was found to be highly dependent on the temperature gradient.\",\"PeriodicalId\":44364,\"journal\":{\"name\":\"Journal of Combustion\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2015-03-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Combustion\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1155/2015/121487\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Combustion","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1155/2015/121487","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 8

摘要

本研究探讨了多孔燃烧器在热电发电中的应用。用丁烷气体对多孔燃烧器进行了测试,使用了两套结构:单层陶瓷和双层氧化铝和陶瓷堆叠。在燃烧器壁上安装了6个总面积为54 cm2的PbSnTe热电(TE)模块。散热片也被添加到TE模块的冷侧。在排气和回闪极限之间改变燃料-空气当量比,并记录相应的温度、电流-电压和排放量。当等效比为0.20 ~ 0.42时,堆积的双层瓷对燃烧效率有负影响,而当等效比为0.60 ~ 0.90时,单层瓷的燃烧效率有减小的趋势。堆积多孔介质的表面温度明显高于单层多孔介质。在两种多孔介质结构中,一氧化碳排放量都是独立的,但在低燃料-空气当量比下,单层陶瓷的一氧化碳排放量有适度的减少。氮氧化物对两种结构的贫燃料-空气等效比不敏感,即使在单层瓷的富区观察到轻微的降低。发现功率输出高度依赖于温度梯度。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Combustion Characteristics of Butane Porous Burner for Thermoelectric Power Generation
The present study explores the utilization of a porous burner for thermoelectric power generation. The porous burner was tested with butane gas using two sets of configurations: single layer porcelain and a stacked-up double layer alumina and porcelain. Six PbSnTe thermoelectric (TE) modules with a total area of 54 cm2 were attached to the wall of the burner. Fins were also added to the cold side of the TE modules. Fuel-air equivalence ratio was varied between the blowoff and flashback limit and the corresponding temperature, current-voltage, and emissions were recorded. The stacked-up double layer negatively affected the combustion efficiency at an equivalence ratio of 0.20 to 0.42, but single layer porcelain shows diminishing trend in the equivalence ratio of 0.60 to 0.90. The surface temperature of a stacked-up porous media is considerably higher than the single layer. Carbon monoxide emission is independent for both porous media configurations, but moderate reduction was recorded for single layer porcelain at lean fuel-air equivalence ratio. Nitrogen oxides is insensitive in the lean fuel-air equivalence ratio for both configurations, even though slight reduction was observed in the rich region for single layer porcelain. Power output was found to be highly dependent on the temperature gradient.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Combustion
Journal of Combustion ENGINEERING, CHEMICAL-
CiteScore
2.00
自引率
28.60%
发文量
8
审稿时长
20 weeks
期刊最新文献
Design, Modeling, and Feasibility Analysis of Rotary Valve for Internal Combustion Engine Comparative Analysis of Swirl Burner and Cross Jet Burner in Terms of Efficiency and Environmental Performance Uranium Dust Cloud Combustion: Burning Characteristics and Absorption Spectroscopy Measurements An Overview of Energy Recovery from Local Slaughterhouse-Based Gallus gallus domesticus Greasy Residues and Latest Applications Effectiveness of Charcoal Adsorbent in Flue Gas Filters for PCB Reduction in Smoke from Hospital Incinerators
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1