PADME:在Frascati BTF寻找暗介质

IF 5.9 2区 物理与天体物理 Q1 PHYSICS, MULTIDISCIPLINARY Rivista Del Nuovo Cimento Pub Date : 2018-09-01 DOI:10.1393/ncc/i2017-17192-4
V. Kozhuharov
{"title":"PADME:在Frascati BTF寻找暗介质","authors":"V. Kozhuharov","doi":"10.1393/ncc/i2017-17192-4","DOIUrl":null,"url":null,"abstract":"— Massive photon-like particles are predicted in many extensions of the Standard Model with a hidden sector accounting for dark matter candidates. They have interactions similar to the photon, are vector bosons, and can be produced together with photons. Most of the present experimental constraints on the dark photon (A) rely on the hypothesis of dominant decays to lepton pairs. The PADME experiment aims at searching for the e+e− → γA process in a positron-on-target experiment, assuming a decay of the A into invisible particles of the hidden sector. The positron beam of the DAΦNE Beam-Test Facility (BTF), produced by the LINAC at the Laboratori Nazionali di Frascati of INFN, will be used. The core of the experimental apparatus is a fine-grained, high-resolution calorimeter. It will measure with high precision the momentum of the photon in events with no other activity in the detector, thus allowing to measure the A mass as the missing mass in the final state. In about one year data taking, a sensitivity on the interaction strength ( 2 parameter) down to 10−6 is achievable, in the mass region from 1 MeV < MA < 23.7 MeV, running with 6000 positrons in 40 ns long bunches at 550 MeV beam energy. The experiment, now in the construction phase, is planned to run in 2018. The status of the PADME detector and the physics potential of PADME is reviewed.","PeriodicalId":54452,"journal":{"name":"Rivista Del Nuovo Cimento","volume":null,"pages":null},"PeriodicalIF":5.9000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"PADME: Searching for dark mediator at the Frascati BTF\",\"authors\":\"V. Kozhuharov\",\"doi\":\"10.1393/ncc/i2017-17192-4\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"— Massive photon-like particles are predicted in many extensions of the Standard Model with a hidden sector accounting for dark matter candidates. They have interactions similar to the photon, are vector bosons, and can be produced together with photons. Most of the present experimental constraints on the dark photon (A) rely on the hypothesis of dominant decays to lepton pairs. The PADME experiment aims at searching for the e+e− → γA process in a positron-on-target experiment, assuming a decay of the A into invisible particles of the hidden sector. The positron beam of the DAΦNE Beam-Test Facility (BTF), produced by the LINAC at the Laboratori Nazionali di Frascati of INFN, will be used. The core of the experimental apparatus is a fine-grained, high-resolution calorimeter. It will measure with high precision the momentum of the photon in events with no other activity in the detector, thus allowing to measure the A mass as the missing mass in the final state. In about one year data taking, a sensitivity on the interaction strength ( 2 parameter) down to 10−6 is achievable, in the mass region from 1 MeV < MA < 23.7 MeV, running with 6000 positrons in 40 ns long bunches at 550 MeV beam energy. The experiment, now in the construction phase, is planned to run in 2018. The status of the PADME detector and the physics potential of PADME is reviewed.\",\"PeriodicalId\":54452,\"journal\":{\"name\":\"Rivista Del Nuovo Cimento\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":5.9000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Rivista Del Nuovo Cimento\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1393/ncc/i2017-17192-4\",\"RegionNum\":2,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Rivista Del Nuovo Cimento","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1393/ncc/i2017-17192-4","RegionNum":2,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 3

摘要

-在标准模型的许多扩展中预测了大质量的光子样粒子,其中隐藏的部分占暗物质候选者。它们具有与光子类似的相互作用,是矢量玻色子,可以与光子一起产生。目前大多数关于暗光子(A)的实验约束都依赖于显性衰变到轻子对的假设。PADME实验的目的是在正电子非靶实验中寻找e+e−→γA过程,假设a衰变为隐藏扇区的不可见粒子。将使用国际核物理研究所弗拉斯卡蒂国家实验室的直线加速器生产的DAΦNE光束测试设备(BTF)的正电子束。实验装置的核心是一个细粒度、高分辨率的量热计。它将在探测器中没有其他活动的事件中高精度地测量光子的动量,从而允许测量A质量作为最终状态中的缺失质量。在大约一年的数据采集中,在1 MeV < MA < 23.7 MeV的质量区域,6000个正电子以550 MeV的束流能量在40 ns长束中运行,对相互作用强度(2个参数)的灵敏度降低到10−6。该实验目前处于建设阶段,计划于2018年运行。综述了PADME探测器的研究现状和PADME的物理潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
PADME: Searching for dark mediator at the Frascati BTF
— Massive photon-like particles are predicted in many extensions of the Standard Model with a hidden sector accounting for dark matter candidates. They have interactions similar to the photon, are vector bosons, and can be produced together with photons. Most of the present experimental constraints on the dark photon (A) rely on the hypothesis of dominant decays to lepton pairs. The PADME experiment aims at searching for the e+e− → γA process in a positron-on-target experiment, assuming a decay of the A into invisible particles of the hidden sector. The positron beam of the DAΦNE Beam-Test Facility (BTF), produced by the LINAC at the Laboratori Nazionali di Frascati of INFN, will be used. The core of the experimental apparatus is a fine-grained, high-resolution calorimeter. It will measure with high precision the momentum of the photon in events with no other activity in the detector, thus allowing to measure the A mass as the missing mass in the final state. In about one year data taking, a sensitivity on the interaction strength ( 2 parameter) down to 10−6 is achievable, in the mass region from 1 MeV < MA < 23.7 MeV, running with 6000 positrons in 40 ns long bunches at 550 MeV beam energy. The experiment, now in the construction phase, is planned to run in 2018. The status of the PADME detector and the physics potential of PADME is reviewed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Rivista Del Nuovo Cimento
Rivista Del Nuovo Cimento 物理-物理:综合
CiteScore
9.50
自引率
2.20%
发文量
11
审稿时长
>12 weeks
期刊介绍: La Rivista del Nuovo Cimento is an international peer-reviewed journal. It publishes monographs in all fields of physics. These monographies aim at presenting the state of the art of topical subjects of relevant interest for the community. Usually, authors are invited and topics suggested by the Deputy Editors-in-Chief, but also spontaneous submissions are examined.
期刊最新文献
Clusters in light nuclei: history and recent developments Emerging Mueller matrix microscopy applications in biophysics and biomedicine Imperfections in natural diamond: the key to understanding diamond genesis and the mantle Nonlinear optics in graphene: theoretical background and recent advances 50th anniversary review of the Mediterranean desiccation hypothesis
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1