{"title":"圆弧角对方圆柱绕流结构的影响","authors":"Hariprasad Chakkalaparambil Many, V. Srinivasan, A. Raghavan","doi":"10.1115/FEDSM2018-83367","DOIUrl":null,"url":null,"abstract":"In this paper, flow structures around a corner modified square cylinder (side dimension, Bo) are presented and discussed. Cylinders with various corner arcs (circular) were considered (arc radius ‘r’). For various Corner Ratios (CR = r/Bo), values ranging from 0 to 0.5, flow visualization experiments were conducted in a water channel and the results are reported at Re = 2100 (based on Bo). Results presented are for two cases (a) stationary cylinders reporting the values of CD (coefficient of drag), St (Strouhal no.), and D (vortex size) and (b) oscillating cylinders at fe/fs = 1 (fe is the cylinder excitation frequency and fs is the vortex shedding frequency) and a/Bo = 0.8 (a is the cylinder oscillation amplitude). The work is aimed to explore the most effective configuration for drag reduction. Cylinder with corner ratio of 0.2 is proved to be the most effective one among the cases considered in this study with 19.3% drag reduction. As a major highlight, in contrast to the results of the previous studies, current study do not reveal a monotonous decrease of drag with increasing corner modification. Instead, it is shown here that, there is a specific value of CR ratio where the drag is the minimum most. A peculiar type of vortex structure was observed in the cases of stationary cylinders with CR > 0.2, contributing to the increase in drag. In the case of oscillating cylinders, description of one complete cycle for all CR ratios at various time instances are presented. The near-wake structures were observed to be dependent on the CR ratio. Counter intuitively, cylinder oscillation does not bring major difference in vortex size compared to the stationary case.","PeriodicalId":23480,"journal":{"name":"Volume 1: Flow Manipulation and Active Control; Bio-Inspired Fluid Mechanics; Boundary Layer and High-Speed Flows; Fluids Engineering Education; Transport Phenomena in Energy Conversion and Mixing; Turbulent Flows; Vortex Dynamics; DNS/LES and Hybrid RANS/LES Methods; Fluid Structure Interaction; Fl","volume":"4 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2018-07-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effect of Corner-Arc on the Flow Structures Around a Square Cylinder\",\"authors\":\"Hariprasad Chakkalaparambil Many, V. Srinivasan, A. Raghavan\",\"doi\":\"10.1115/FEDSM2018-83367\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, flow structures around a corner modified square cylinder (side dimension, Bo) are presented and discussed. Cylinders with various corner arcs (circular) were considered (arc radius ‘r’). For various Corner Ratios (CR = r/Bo), values ranging from 0 to 0.5, flow visualization experiments were conducted in a water channel and the results are reported at Re = 2100 (based on Bo). Results presented are for two cases (a) stationary cylinders reporting the values of CD (coefficient of drag), St (Strouhal no.), and D (vortex size) and (b) oscillating cylinders at fe/fs = 1 (fe is the cylinder excitation frequency and fs is the vortex shedding frequency) and a/Bo = 0.8 (a is the cylinder oscillation amplitude). The work is aimed to explore the most effective configuration for drag reduction. Cylinder with corner ratio of 0.2 is proved to be the most effective one among the cases considered in this study with 19.3% drag reduction. As a major highlight, in contrast to the results of the previous studies, current study do not reveal a monotonous decrease of drag with increasing corner modification. Instead, it is shown here that, there is a specific value of CR ratio where the drag is the minimum most. A peculiar type of vortex structure was observed in the cases of stationary cylinders with CR > 0.2, contributing to the increase in drag. In the case of oscillating cylinders, description of one complete cycle for all CR ratios at various time instances are presented. The near-wake structures were observed to be dependent on the CR ratio. Counter intuitively, cylinder oscillation does not bring major difference in vortex size compared to the stationary case.\",\"PeriodicalId\":23480,\"journal\":{\"name\":\"Volume 1: Flow Manipulation and Active Control; Bio-Inspired Fluid Mechanics; Boundary Layer and High-Speed Flows; Fluids Engineering Education; Transport Phenomena in Energy Conversion and Mixing; Turbulent Flows; Vortex Dynamics; DNS/LES and Hybrid RANS/LES Methods; Fluid Structure Interaction; Fl\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-07-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 1: Flow Manipulation and Active Control; Bio-Inspired Fluid Mechanics; Boundary Layer and High-Speed Flows; Fluids Engineering Education; Transport Phenomena in Energy Conversion and Mixing; Turbulent Flows; Vortex Dynamics; DNS/LES and Hybrid RANS/LES Methods; Fluid Structure Interaction; Fl\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/FEDSM2018-83367\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 1: Flow Manipulation and Active Control; Bio-Inspired Fluid Mechanics; Boundary Layer and High-Speed Flows; Fluids Engineering Education; Transport Phenomena in Energy Conversion and Mixing; Turbulent Flows; Vortex Dynamics; DNS/LES and Hybrid RANS/LES Methods; Fluid Structure Interaction; Fl","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/FEDSM2018-83367","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

本文给出并讨论了转角修正方圆柱(边维,Bo)周围的流动结构。考虑具有不同角弧(圆形)的圆柱体(弧半径' r ')。在不同的角比(CR = r/Bo)范围为0 ~ 0.5的情况下,在水道中进行了流动显示实验,并在Re = 2100时(以Bo为基准)报告了结果。给出了两种情况下的结果(a)固定圆柱体报告了CD(阻力系数)、St(斯特罗哈尔号)和D(涡流大小)的值,(b)在fe/fs = 1 (fe为圆柱体激励频率,fs为涡流脱落频率)和a/Bo = 0.8 (a为圆柱体振荡幅度)时的振荡圆柱体。这项工作旨在探索最有效的减阻配置。角比为0.2的气缸减阻效果最好,减阻19.3%。主要的亮点是,与以往的研究结果相比,目前的研究并没有显示出随着转角修改的增加阻力单调下降。相反,这里显示,存在一个特定的CR比值,其中阻力最小。在CR为> .2的固定气缸中,观察到一种特殊的涡结构,导致阻力增加。在振荡圆柱体的情况下,描述了一个完整的周期在不同的时间实例的所有CR比。观察到近尾迹结构依赖于CR比。与直觉相反,与静止情况相比,圆柱体振荡不会带来涡旋大小的重大差异。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effect of Corner-Arc on the Flow Structures Around a Square Cylinder
In this paper, flow structures around a corner modified square cylinder (side dimension, Bo) are presented and discussed. Cylinders with various corner arcs (circular) were considered (arc radius ‘r’). For various Corner Ratios (CR = r/Bo), values ranging from 0 to 0.5, flow visualization experiments were conducted in a water channel and the results are reported at Re = 2100 (based on Bo). Results presented are for two cases (a) stationary cylinders reporting the values of CD (coefficient of drag), St (Strouhal no.), and D (vortex size) and (b) oscillating cylinders at fe/fs = 1 (fe is the cylinder excitation frequency and fs is the vortex shedding frequency) and a/Bo = 0.8 (a is the cylinder oscillation amplitude). The work is aimed to explore the most effective configuration for drag reduction. Cylinder with corner ratio of 0.2 is proved to be the most effective one among the cases considered in this study with 19.3% drag reduction. As a major highlight, in contrast to the results of the previous studies, current study do not reveal a monotonous decrease of drag with increasing corner modification. Instead, it is shown here that, there is a specific value of CR ratio where the drag is the minimum most. A peculiar type of vortex structure was observed in the cases of stationary cylinders with CR > 0.2, contributing to the increase in drag. In the case of oscillating cylinders, description of one complete cycle for all CR ratios at various time instances are presented. The near-wake structures were observed to be dependent on the CR ratio. Counter intuitively, cylinder oscillation does not bring major difference in vortex size compared to the stationary case.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Experimental Investigation of a Flapping Motion Downstream of a Backward Facing Step Experimental Study on Modeled Caudal Fins Propelling by Elastic Deformation Simulation of Coalescence and Breakup of Dispersed Water Droplets in Continuous Oil Phase Multi-Objective Optimization on Inlet Pipe of a Vertical Inline Pump Based on Genetic Algorithm and Artificial Neural Network Turbulent Flow Characteristics Over Offset Wall Confined Columns in a Channel at Low Reynolds Numbers
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1