基于深度神经网络的初始静电电位分布生成

Seung-Cheol Han, Sung-Min Hong
{"title":"基于深度神经网络的初始静电电位分布生成","authors":"Seung-Cheol Han, Sung-Min Hong","doi":"10.1109/SISPAD.2019.8870521","DOIUrl":null,"url":null,"abstract":"A deep neural network is trained to learn the electrostatic potential of the semiconductor device. In order to demonstrate its feasibility, pn diodes are considered. Various pn diodes with different doping densities are generated and the numerical solutions are calculated. The resultant electrostatic potential profiles are used in the training phase. Our numerical results clearly demonstrate that the trained neural network can provide the initial electrostatic potential reasonably well. Since the initial electrostatic potential is improved, the Newton-Raphson loop for the nonlinear Poisson equation can be converged within a smaller number of iterations.","PeriodicalId":6755,"journal":{"name":"2019 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","volume":"58 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2019-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Deep Neural Network for Generation of the Initial Electrostatic Potential Profile\",\"authors\":\"Seung-Cheol Han, Sung-Min Hong\",\"doi\":\"10.1109/SISPAD.2019.8870521\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A deep neural network is trained to learn the electrostatic potential of the semiconductor device. In order to demonstrate its feasibility, pn diodes are considered. Various pn diodes with different doping densities are generated and the numerical solutions are calculated. The resultant electrostatic potential profiles are used in the training phase. Our numerical results clearly demonstrate that the trained neural network can provide the initial electrostatic potential reasonably well. Since the initial electrostatic potential is improved, the Newton-Raphson loop for the nonlinear Poisson equation can be converged within a smaller number of iterations.\",\"PeriodicalId\":6755,\"journal\":{\"name\":\"2019 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)\",\"volume\":\"58 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/SISPAD.2019.8870521\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 International Conference on Simulation of Semiconductor Processes and Devices (SISPAD)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/SISPAD.2019.8870521","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

训练深度神经网络来学习半导体器件的静电势。为了证明其可行性,我们考虑了pn二极管。制备了不同掺杂密度的pn二极管,并计算了数值解。所得到的静电电位分布在训练阶段使用。数值结果清楚地表明,所训练的神经网络能较好地提供初始静电势。由于改进了初始静电势,非线性泊松方程的Newton-Raphson环可以在更少的迭代次数内收敛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deep Neural Network for Generation of the Initial Electrostatic Potential Profile
A deep neural network is trained to learn the electrostatic potential of the semiconductor device. In order to demonstrate its feasibility, pn diodes are considered. Various pn diodes with different doping densities are generated and the numerical solutions are calculated. The resultant electrostatic potential profiles are used in the training phase. Our numerical results clearly demonstrate that the trained neural network can provide the initial electrostatic potential reasonably well. Since the initial electrostatic potential is improved, the Newton-Raphson loop for the nonlinear Poisson equation can be converged within a smaller number of iterations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effect of Stacking Faults on the Thermoelectric Figure of Merit of Si Nanowires Effect of Trap on Carrier Transport in InAs FET with Al2 O3 Oxide: DFT-based NEGF simulations Defect creation and Diffusion under electric fields from first-principles: the prototypical case of silicon dioxide Quantum Transport Simulations of the Zero Temperature Coefficient in Gate-all-around Nanowire pFETs Electronic and structural properties of interstitial titanium in crystalline silicon from first-principles simulations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1