{"title":"纳米模拟电路的故障建模与诊断","authors":"K. Huang, H. Stratigopoulos, S. Mir","doi":"10.1109/TEST.2013.6651886","DOIUrl":null,"url":null,"abstract":"Fault diagnosis of Integrated Circuits (ICs) has grown into a special field of interest in the Semiconductor Industry. Fault diagnosis is very useful at the design stage for debugging purposes, at high-volume manufacturing for obtaining feedback about the underlying fault mechanisms and improving the design and layout in future IC generations, and in cases where the IC is part of a larger safety-critical system (e.g. automotive, aerospace) for identifying the root-cause of failure and for applying corrective actions that will prevent failure reoccurrence and, thereby, will expand the safety features. In this summary paper, we present a methodology for fault modeling and fault diagnosis of analog circuits based on machine learning. A defect filter is used to recognize the type of fault (parametric or catastrophic), inverse regression functions are used to locate and predict the values of parametric faults, and multi-class classifiers are used to list catastrophic faults according to their likelihood of occurrence. The methodology is demonstrated on both simulation and high-volume manufacturing data showing excellent overall diagnosis rate.","PeriodicalId":6379,"journal":{"name":"2013 IEEE International Test Conference (ITC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Fault modeling and diagnosis for nanometric analog circuits\",\"authors\":\"K. Huang, H. Stratigopoulos, S. Mir\",\"doi\":\"10.1109/TEST.2013.6651886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fault diagnosis of Integrated Circuits (ICs) has grown into a special field of interest in the Semiconductor Industry. Fault diagnosis is very useful at the design stage for debugging purposes, at high-volume manufacturing for obtaining feedback about the underlying fault mechanisms and improving the design and layout in future IC generations, and in cases where the IC is part of a larger safety-critical system (e.g. automotive, aerospace) for identifying the root-cause of failure and for applying corrective actions that will prevent failure reoccurrence and, thereby, will expand the safety features. In this summary paper, we present a methodology for fault modeling and fault diagnosis of analog circuits based on machine learning. A defect filter is used to recognize the type of fault (parametric or catastrophic), inverse regression functions are used to locate and predict the values of parametric faults, and multi-class classifiers are used to list catastrophic faults according to their likelihood of occurrence. The methodology is demonstrated on both simulation and high-volume manufacturing data showing excellent overall diagnosis rate.\",\"PeriodicalId\":6379,\"journal\":{\"name\":\"2013 IEEE International Test Conference (ITC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Test Conference (ITC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TEST.2013.6651886\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Test Conference (ITC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TEST.2013.6651886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Fault modeling and diagnosis for nanometric analog circuits
Fault diagnosis of Integrated Circuits (ICs) has grown into a special field of interest in the Semiconductor Industry. Fault diagnosis is very useful at the design stage for debugging purposes, at high-volume manufacturing for obtaining feedback about the underlying fault mechanisms and improving the design and layout in future IC generations, and in cases where the IC is part of a larger safety-critical system (e.g. automotive, aerospace) for identifying the root-cause of failure and for applying corrective actions that will prevent failure reoccurrence and, thereby, will expand the safety features. In this summary paper, we present a methodology for fault modeling and fault diagnosis of analog circuits based on machine learning. A defect filter is used to recognize the type of fault (parametric or catastrophic), inverse regression functions are used to locate and predict the values of parametric faults, and multi-class classifiers are used to list catastrophic faults according to their likelihood of occurrence. The methodology is demonstrated on both simulation and high-volume manufacturing data showing excellent overall diagnosis rate.