纳米模拟电路的故障建模与诊断

K. Huang, H. Stratigopoulos, S. Mir
{"title":"纳米模拟电路的故障建模与诊断","authors":"K. Huang, H. Stratigopoulos, S. Mir","doi":"10.1109/TEST.2013.6651886","DOIUrl":null,"url":null,"abstract":"Fault diagnosis of Integrated Circuits (ICs) has grown into a special field of interest in the Semiconductor Industry. Fault diagnosis is very useful at the design stage for debugging purposes, at high-volume manufacturing for obtaining feedback about the underlying fault mechanisms and improving the design and layout in future IC generations, and in cases where the IC is part of a larger safety-critical system (e.g. automotive, aerospace) for identifying the root-cause of failure and for applying corrective actions that will prevent failure reoccurrence and, thereby, will expand the safety features. In this summary paper, we present a methodology for fault modeling and fault diagnosis of analog circuits based on machine learning. A defect filter is used to recognize the type of fault (parametric or catastrophic), inverse regression functions are used to locate and predict the values of parametric faults, and multi-class classifiers are used to list catastrophic faults according to their likelihood of occurrence. The methodology is demonstrated on both simulation and high-volume manufacturing data showing excellent overall diagnosis rate.","PeriodicalId":6379,"journal":{"name":"2013 IEEE International Test Conference (ITC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2013-11-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Fault modeling and diagnosis for nanometric analog circuits\",\"authors\":\"K. Huang, H. Stratigopoulos, S. Mir\",\"doi\":\"10.1109/TEST.2013.6651886\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fault diagnosis of Integrated Circuits (ICs) has grown into a special field of interest in the Semiconductor Industry. Fault diagnosis is very useful at the design stage for debugging purposes, at high-volume manufacturing for obtaining feedback about the underlying fault mechanisms and improving the design and layout in future IC generations, and in cases where the IC is part of a larger safety-critical system (e.g. automotive, aerospace) for identifying the root-cause of failure and for applying corrective actions that will prevent failure reoccurrence and, thereby, will expand the safety features. In this summary paper, we present a methodology for fault modeling and fault diagnosis of analog circuits based on machine learning. A defect filter is used to recognize the type of fault (parametric or catastrophic), inverse regression functions are used to locate and predict the values of parametric faults, and multi-class classifiers are used to list catastrophic faults according to their likelihood of occurrence. The methodology is demonstrated on both simulation and high-volume manufacturing data showing excellent overall diagnosis rate.\",\"PeriodicalId\":6379,\"journal\":{\"name\":\"2013 IEEE International Test Conference (ITC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-11-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Test Conference (ITC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/TEST.2013.6651886\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Test Conference (ITC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/TEST.2013.6651886","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

集成电路(ic)的故障诊断已经发展成为半导体行业的一个特殊领域。故障诊断在设计阶段非常有用,用于调试目的,在大批量生产中获得有关潜在故障机制的反馈,并改进未来IC代的设计和布局,以及在IC是更大的安全关键系统(例如汽车,航空航天)的一部分的情况下,用于识别故障的根本原因并应用纠正措施,以防止故障再次发生,从而扩展安全功能。在本文中,我们提出了一种基于机器学习的模拟电路故障建模和故障诊断方法。缺陷过滤器用于识别故障类型(参数或灾难性),逆回归函数用于定位和预测参数故障的值,多类分类器用于根据故障发生的可能性列出灾难性故障。该方法在仿真和大批量生产数据上进行了验证,显示出良好的总体诊断率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fault modeling and diagnosis for nanometric analog circuits
Fault diagnosis of Integrated Circuits (ICs) has grown into a special field of interest in the Semiconductor Industry. Fault diagnosis is very useful at the design stage for debugging purposes, at high-volume manufacturing for obtaining feedback about the underlying fault mechanisms and improving the design and layout in future IC generations, and in cases where the IC is part of a larger safety-critical system (e.g. automotive, aerospace) for identifying the root-cause of failure and for applying corrective actions that will prevent failure reoccurrence and, thereby, will expand the safety features. In this summary paper, we present a methodology for fault modeling and fault diagnosis of analog circuits based on machine learning. A defect filter is used to recognize the type of fault (parametric or catastrophic), inverse regression functions are used to locate and predict the values of parametric faults, and multi-class classifiers are used to list catastrophic faults according to their likelihood of occurrence. The methodology is demonstrated on both simulation and high-volume manufacturing data showing excellent overall diagnosis rate.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
In-system diagnosis of RF ICs for tolerance against on-chip in-band interferers Uncertainty-aware robust optimization of test-access architectures for 3D stacked ICs FPGA-based universal embedded digital instrument Early-life-failure detection using SAT-based ATPG Self-repair of uncore components in robust system-on-chips: An OpenSPARC T2 case study
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1