基于气动微挤压的聚己内酯骨支架添加剂生物制造:第二部分-聚合物流动参数影响的研究

Mohan Yu, Logan Lawrence, P. Claudio, James B. Day, Roozbeh Salary
{"title":"基于气动微挤压的聚己内酯骨支架添加剂生物制造:第二部分-聚合物流动参数影响的研究","authors":"Mohan Yu, Logan Lawrence, P. Claudio, James B. Day, Roozbeh Salary","doi":"10.1115/msec2021-63412","DOIUrl":null,"url":null,"abstract":"\n Pneumatic micro-extrusion (PME), a direct-write additive manufacturing process, has emerged as a high-resolution method for the fabrication of a broad range of biological tissues and organs. However, the PME process is intrinsically complex, governed by complex physical phenomena. Hence, investigation of the effects of consequential parameters would be an inevitable need. The goal of this research work is to fabricate biocompatible, porous bone tissue scaffolds for the treatment of osseous fractures, defects, and eventually diseases. In pursuit of this goal, the objective of this study is to investigate the influence of material deposition factors — i.e., (i) deposition head temperature, (ii) flow pressure, and (iii) infill pattern — on the mechanical performance of PME-fabricated bone scaffolds.\n It was observed that the deposition head temperature as well as the flow pressure significantly affected scaffold diameter (unlike scaffold height). In addition, material deposition rate increased significantly as a result of an increase in the deposition temperature; this phenomenon stems from a reduction in Polycaprolactone (PCL) viscosity. Furthermore, there was a direct correlation between the amount of deposited mass and scaffold stiffness. Overall, the results of this study pave the way for future investigation of PME-deposited PCL scaffolds with optimal functional properties for incorporation of stem cells toward the treatment of osseous fractures and defects.","PeriodicalId":56519,"journal":{"name":"光:先进制造(英文)","volume":"54 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2021-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pneumatic Microextrusion-Based Additive Biofabrication of Polycaprolactone Bone Scaffolds: Part II – Investigation of the Influence of Polymer Flow Parameters\",\"authors\":\"Mohan Yu, Logan Lawrence, P. Claudio, James B. Day, Roozbeh Salary\",\"doi\":\"10.1115/msec2021-63412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Pneumatic micro-extrusion (PME), a direct-write additive manufacturing process, has emerged as a high-resolution method for the fabrication of a broad range of biological tissues and organs. However, the PME process is intrinsically complex, governed by complex physical phenomena. Hence, investigation of the effects of consequential parameters would be an inevitable need. The goal of this research work is to fabricate biocompatible, porous bone tissue scaffolds for the treatment of osseous fractures, defects, and eventually diseases. In pursuit of this goal, the objective of this study is to investigate the influence of material deposition factors — i.e., (i) deposition head temperature, (ii) flow pressure, and (iii) infill pattern — on the mechanical performance of PME-fabricated bone scaffolds.\\n It was observed that the deposition head temperature as well as the flow pressure significantly affected scaffold diameter (unlike scaffold height). In addition, material deposition rate increased significantly as a result of an increase in the deposition temperature; this phenomenon stems from a reduction in Polycaprolactone (PCL) viscosity. Furthermore, there was a direct correlation between the amount of deposited mass and scaffold stiffness. Overall, the results of this study pave the way for future investigation of PME-deposited PCL scaffolds with optimal functional properties for incorporation of stem cells toward the treatment of osseous fractures and defects.\",\"PeriodicalId\":56519,\"journal\":{\"name\":\"光:先进制造(英文)\",\"volume\":\"54 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"光:先进制造(英文)\",\"FirstCategoryId\":\"1087\",\"ListUrlMain\":\"https://doi.org/10.1115/msec2021-63412\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"光:先进制造(英文)","FirstCategoryId":"1087","ListUrlMain":"https://doi.org/10.1115/msec2021-63412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

气动微挤压(PME)是一种直接写入的增材制造工艺,已经成为制造各种生物组织和器官的高分辨率方法。然而,PME过程本质上是复杂的,受复杂的物理现象支配。因此,研究相应参数的影响将是不可避免的需要。这项研究工作的目标是制造生物相容性的多孔骨组织支架,用于骨骨折、骨缺损和最终疾病的治疗。为了实现这一目标,本研究的目的是研究材料沉积因素-即(i)沉积头温度,(ii)流动压力和(iii)填充模式-对pme制造骨支架力学性能的影响。观察到沉积头温度和流动压力显著影响支架直径(与支架高度不同)。此外,随着沉积温度的升高,材料沉积速率显著增加;这种现象源于聚己内酯(PCL)粘度的降低。此外,沉积质量与支架刚度之间存在直接相关性。总的来说,本研究的结果为未来研究pme沉积的PCL支架铺平了道路,该支架具有最佳的功能特性,可以将干细胞纳入骨骨折和骨缺损的治疗中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pneumatic Microextrusion-Based Additive Biofabrication of Polycaprolactone Bone Scaffolds: Part II – Investigation of the Influence of Polymer Flow Parameters
Pneumatic micro-extrusion (PME), a direct-write additive manufacturing process, has emerged as a high-resolution method for the fabrication of a broad range of biological tissues and organs. However, the PME process is intrinsically complex, governed by complex physical phenomena. Hence, investigation of the effects of consequential parameters would be an inevitable need. The goal of this research work is to fabricate biocompatible, porous bone tissue scaffolds for the treatment of osseous fractures, defects, and eventually diseases. In pursuit of this goal, the objective of this study is to investigate the influence of material deposition factors — i.e., (i) deposition head temperature, (ii) flow pressure, and (iii) infill pattern — on the mechanical performance of PME-fabricated bone scaffolds. It was observed that the deposition head temperature as well as the flow pressure significantly affected scaffold diameter (unlike scaffold height). In addition, material deposition rate increased significantly as a result of an increase in the deposition temperature; this phenomenon stems from a reduction in Polycaprolactone (PCL) viscosity. Furthermore, there was a direct correlation between the amount of deposited mass and scaffold stiffness. Overall, the results of this study pave the way for future investigation of PME-deposited PCL scaffolds with optimal functional properties for incorporation of stem cells toward the treatment of osseous fractures and defects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.90
自引率
0.00%
发文量
0
期刊最新文献
Ultra-wideband Waveguide-coupled Photodiodes Heterogeneously Integrated on a Thin-film Lithium Niobate Platform Quantitative phase imaging (QPI) through random diffusers using a diffractive optical network Front Matter: Volume 12507 Research on key technology of compound polishing of off-axis parabolic mirror Precision polishing of the mandrel for x-ray grazing incidence mirrors in the Einstein probe
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1