Aleksey V. Balovnev, V. K. Davydov, A. P. Zhirnov, Andrey V. Moiseev, E. Soldatov
{"title":"Simulating铅冷却快堆的燃料循环","authors":"Aleksey V. Balovnev, V. K. Davydov, A. P. Zhirnov, Andrey V. Moiseev, E. Soldatov","doi":"10.3897/nucet.8.83062","DOIUrl":null,"url":null,"abstract":"The development of nuclear power with fast reactors is associated with the implementation of a closed nuclear fuel cycle (CNFC). In this regard, one actual task is to simulate the stages of the fuel cycle with study of the neutron-physical characteristics of the core. The design of a reactor for operation in the closed nuclear fuel cycle mode is impossible without the using of verified and certified software packages for calculating fast reactors, capable of simulating all stages of the operation of the reactor facility and the fuel cycle. For the calculations, the FACT-BR software package was used, which has all the necessary capabilities to simulate the operation of the reactor in the closed nuclear fuel cycle mode, taking into account the stages of fuel storage and refabrication. The article presents a technique for modeling the fuel cycle, implemented for the operation of fast reactors with a lead coolant. To demonstrate methodology, a closed nuclear fuel cycle was simulated for the BREST-OD-300 and BR-1200 reactors for the design life. The article describes the scenarios in which the calculation of the burnup of reactor was carried out. In the considered scenarios, it is assumed that the unloading of fuel at the end of the micro campaign is conducted according to the maximum burnup. During the computational modeling the ranges of changes in fuel density and enrichment, reactivity margin, breeding ratio and isotopic composition of plutonium were determined.","PeriodicalId":100969,"journal":{"name":"Nuclear Energy and Technology","volume":"23 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2022-03-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Simulating the fuel cycle of a lead-cooled fast reactor\",\"authors\":\"Aleksey V. Balovnev, V. K. Davydov, A. P. Zhirnov, Andrey V. Moiseev, E. Soldatov\",\"doi\":\"10.3897/nucet.8.83062\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The development of nuclear power with fast reactors is associated with the implementation of a closed nuclear fuel cycle (CNFC). In this regard, one actual task is to simulate the stages of the fuel cycle with study of the neutron-physical characteristics of the core. The design of a reactor for operation in the closed nuclear fuel cycle mode is impossible without the using of verified and certified software packages for calculating fast reactors, capable of simulating all stages of the operation of the reactor facility and the fuel cycle. For the calculations, the FACT-BR software package was used, which has all the necessary capabilities to simulate the operation of the reactor in the closed nuclear fuel cycle mode, taking into account the stages of fuel storage and refabrication. The article presents a technique for modeling the fuel cycle, implemented for the operation of fast reactors with a lead coolant. To demonstrate methodology, a closed nuclear fuel cycle was simulated for the BREST-OD-300 and BR-1200 reactors for the design life. The article describes the scenarios in which the calculation of the burnup of reactor was carried out. In the considered scenarios, it is assumed that the unloading of fuel at the end of the micro campaign is conducted according to the maximum burnup. During the computational modeling the ranges of changes in fuel density and enrichment, reactivity margin, breeding ratio and isotopic composition of plutonium were determined.\",\"PeriodicalId\":100969,\"journal\":{\"name\":\"Nuclear Energy and Technology\",\"volume\":\"23 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-03-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Nuclear Energy and Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3897/nucet.8.83062\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Nuclear Energy and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3897/nucet.8.83062","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Simulating the fuel cycle of a lead-cooled fast reactor
The development of nuclear power with fast reactors is associated with the implementation of a closed nuclear fuel cycle (CNFC). In this regard, one actual task is to simulate the stages of the fuel cycle with study of the neutron-physical characteristics of the core. The design of a reactor for operation in the closed nuclear fuel cycle mode is impossible without the using of verified and certified software packages for calculating fast reactors, capable of simulating all stages of the operation of the reactor facility and the fuel cycle. For the calculations, the FACT-BR software package was used, which has all the necessary capabilities to simulate the operation of the reactor in the closed nuclear fuel cycle mode, taking into account the stages of fuel storage and refabrication. The article presents a technique for modeling the fuel cycle, implemented for the operation of fast reactors with a lead coolant. To demonstrate methodology, a closed nuclear fuel cycle was simulated for the BREST-OD-300 and BR-1200 reactors for the design life. The article describes the scenarios in which the calculation of the burnup of reactor was carried out. In the considered scenarios, it is assumed that the unloading of fuel at the end of the micro campaign is conducted according to the maximum burnup. During the computational modeling the ranges of changes in fuel density and enrichment, reactivity margin, breeding ratio and isotopic composition of plutonium were determined.