{"title":"金属溶液中硅LPE的生长动力学研究","authors":"T. Wang, T.F. Ciszek","doi":"10.1109/WCPEC.1994.519956","DOIUrl":null,"url":null,"abstract":"Growth kinetics of silicon liquid phase epitaxy (LPE) from metal solutions was studied in pursuit of device-quality layer formation on cast, metallurgical-grade silicon (MG-Si) substrates for solar cells. We report that a mixture of Al and Cu as a solvent for Si enhances solution wetting to the substrate by Al-SiO/sub 2/ reaction, and generates isotropic growth and macroscopically smooth surfaces due to its high solvent power. This solvent system also controls Al incorporation into the layer by proper Al and Cu compositions in the solution. The layer growth rate was calculated with a rough interface/diffusion boundary layer model and was found to be in good agreement with experimental results, indicating only a small boundary layer (/spl sim/0.1 cm) and a silicon diffusivity of /spl sim/2/spl times/10/sup -4/ cm/sup 2//s in the liquid. The thin layer (/spl sim/30 /spl mu/m) grown on the MG-Si substrate has a minority-carrier diffusion length greater than the layer thickness.","PeriodicalId":20517,"journal":{"name":"Proceedings of 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion - WCPEC (A Joint Conference of PVSC, PVSEC and PSEC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"1994-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Growth kinetics studies of silicon LPE from metal solutions\",\"authors\":\"T. Wang, T.F. Ciszek\",\"doi\":\"10.1109/WCPEC.1994.519956\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Growth kinetics of silicon liquid phase epitaxy (LPE) from metal solutions was studied in pursuit of device-quality layer formation on cast, metallurgical-grade silicon (MG-Si) substrates for solar cells. We report that a mixture of Al and Cu as a solvent for Si enhances solution wetting to the substrate by Al-SiO/sub 2/ reaction, and generates isotropic growth and macroscopically smooth surfaces due to its high solvent power. This solvent system also controls Al incorporation into the layer by proper Al and Cu compositions in the solution. The layer growth rate was calculated with a rough interface/diffusion boundary layer model and was found to be in good agreement with experimental results, indicating only a small boundary layer (/spl sim/0.1 cm) and a silicon diffusivity of /spl sim/2/spl times/10/sup -4/ cm/sup 2//s in the liquid. The thin layer (/spl sim/30 /spl mu/m) grown on the MG-Si substrate has a minority-carrier diffusion length greater than the layer thickness.\",\"PeriodicalId\":20517,\"journal\":{\"name\":\"Proceedings of 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion - WCPEC (A Joint Conference of PVSC, PVSEC and PSEC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1994-12-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion - WCPEC (A Joint Conference of PVSC, PVSEC and PSEC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/WCPEC.1994.519956\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of 1994 IEEE 1st World Conference on Photovoltaic Energy Conversion - WCPEC (A Joint Conference of PVSC, PVSEC and PSEC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/WCPEC.1994.519956","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

为了在铸造的冶金级硅(MG-Si)太阳能电池衬底上形成器件级的硅液相外延(LPE),研究了金属溶液中硅液相外延(LPE)的生长动力学。我们报道了Al和Cu的混合物作为Si的溶剂,通过Al- sio /sub - 2/反应增强了溶液对衬底的润湿,并且由于其高溶剂功率而产生各向同性生长和宏观光滑表面。该溶剂体系还通过溶液中适当的Al和Cu组成来控制Al的掺入。用粗糙的界面/扩散边界层模型计算了层的生长速率,结果与实验结果吻合较好,表明在液体中只有一个小的边界层(/spl sim/0.1 cm),硅的扩散系数为/spl sim/2/spl乘以/10/sup -4/ cm/sup /2/s。在MG-Si衬底上生长的薄层(/spl sim/30 /spl mu/m)的少数载流子扩散长度大于层厚。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Growth kinetics studies of silicon LPE from metal solutions
Growth kinetics of silicon liquid phase epitaxy (LPE) from metal solutions was studied in pursuit of device-quality layer formation on cast, metallurgical-grade silicon (MG-Si) substrates for solar cells. We report that a mixture of Al and Cu as a solvent for Si enhances solution wetting to the substrate by Al-SiO/sub 2/ reaction, and generates isotropic growth and macroscopically smooth surfaces due to its high solvent power. This solvent system also controls Al incorporation into the layer by proper Al and Cu compositions in the solution. The layer growth rate was calculated with a rough interface/diffusion boundary layer model and was found to be in good agreement with experimental results, indicating only a small boundary layer (/spl sim/0.1 cm) and a silicon diffusivity of /spl sim/2/spl times/10/sup -4/ cm/sup 2//s in the liquid. The thin layer (/spl sim/30 /spl mu/m) grown on the MG-Si substrate has a minority-carrier diffusion length greater than the layer thickness.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Optimisation of photovoltaic water pumps coupled with an interfacing pulse width modulated DC/AC inverter power conditioning device Module orientated photovoltaic inverters-a comparison of different circuits Japanese space solar cell activities-GaAs and Si InP solar cell improvement by inverse delta-doping Improvement of AlGaAs solar cell grown on Si substrate
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1