热液蚀变和矿化对兄弟火山IODP 376考察岩石古地磁性质的影响

IF 5.5 1区 地球科学 Q1 GEOCHEMISTRY & GEOPHYSICS Economic Geology Pub Date : 2023-04-25 DOI:10.5382/econgeo.5008
F. Tontini, G. Turner, A. Reyes, F. Speranza, M. Tivey, C. Massiot, C. D. de Ronde, S. Humphris
{"title":"热液蚀变和矿化对兄弟火山IODP 376考察岩石古地磁性质的影响","authors":"F. Tontini, G. Turner, A. Reyes, F. Speranza, M. Tivey, C. Massiot, C. D. de Ronde, S. Humphris","doi":"10.5382/econgeo.5008","DOIUrl":null,"url":null,"abstract":"\n The 3-D subseafloor architecture of submarine hydrothermal systems is largely unknown, particularly at arc volcanoes. The alteration of volcanic rocks in these systems produces dramatic changes in their magnetic properties. Here, we present the first comprehensive study of paleomagnetic measurements from oriented samples of hydrothermally altered dacites from Brothers volcano (Kermadec arc), drilled during International Ocean Discovery Program (IODP) Expedition 376. These data have enabled insight into the progressive evolution of magnetic minerals in subseafloor volcanic rocks affected by variable types and degrees of hydrothermal alteration in response to varying fluid temperatures, chemistry, and associated mineralization; from initial chloritization typical of relatively low-temperature interaction with seawater to extremely altered rocks affected by higher-temperature, very acidic magmatic fluids.\n Hydrothermally altered samples show a significant reduction in natural remanent magnetization intensity (10–4 to 10–2 A/m) compared with unaltered samples (1–10 A/m), suggesting that primary titanomagnetite grains are destroyed during the hydrothermal alteration process. Except for a small region in proximity to the mineralized stockwork zone, no chemical remanent magnetization is observed in association with hydrothermal alteration, consistent with the widespread formation of diamagnetic and/or paramagnetic minerals such as pyrite, rutile, and leucoxene, which do not carry any natural remanent magnetization.\n Demagnetization experiments show that most of the oriented samples possess a stable characteristic remanent magnetization induced by the residual primary magnetic minerals formed at the time the rocks cooled on the sea floor. Partially chloritized dacites, however, are characterized by large magnetic susceptibilities, low Koenigsberger ratios, and very low magnetic coercivities, consistent with initial dissolution of smaller, singledomain magnetic grains, indicating that intensely hydrothermally altered rocks are better paleomagnetic indicators than initially chloritized samples at the periphery of the hydrothermal systems.\n The significant magnetic contrast between fresh and hydrothermally altered rocks, in addition to a thick layer (>300 m) of demagnetized rocks observed at Brothers volcano, confirms the empirical results that magnetic anomalies are important geophysical tools to determine the geometry of hydrothermal systems at submarine arc volcanoes.","PeriodicalId":11469,"journal":{"name":"Economic Geology","volume":"31 1","pages":""},"PeriodicalIF":5.5000,"publicationDate":"2023-04-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Effects of Hydrothermal Alteration and Mineralization on the Paleomagnetic Properties of Rocks from IODP Expedition 376 at Brothers Volcano\",\"authors\":\"F. Tontini, G. Turner, A. Reyes, F. Speranza, M. Tivey, C. Massiot, C. D. de Ronde, S. Humphris\",\"doi\":\"10.5382/econgeo.5008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n The 3-D subseafloor architecture of submarine hydrothermal systems is largely unknown, particularly at arc volcanoes. The alteration of volcanic rocks in these systems produces dramatic changes in their magnetic properties. Here, we present the first comprehensive study of paleomagnetic measurements from oriented samples of hydrothermally altered dacites from Brothers volcano (Kermadec arc), drilled during International Ocean Discovery Program (IODP) Expedition 376. These data have enabled insight into the progressive evolution of magnetic minerals in subseafloor volcanic rocks affected by variable types and degrees of hydrothermal alteration in response to varying fluid temperatures, chemistry, and associated mineralization; from initial chloritization typical of relatively low-temperature interaction with seawater to extremely altered rocks affected by higher-temperature, very acidic magmatic fluids.\\n Hydrothermally altered samples show a significant reduction in natural remanent magnetization intensity (10–4 to 10–2 A/m) compared with unaltered samples (1–10 A/m), suggesting that primary titanomagnetite grains are destroyed during the hydrothermal alteration process. Except for a small region in proximity to the mineralized stockwork zone, no chemical remanent magnetization is observed in association with hydrothermal alteration, consistent with the widespread formation of diamagnetic and/or paramagnetic minerals such as pyrite, rutile, and leucoxene, which do not carry any natural remanent magnetization.\\n Demagnetization experiments show that most of the oriented samples possess a stable characteristic remanent magnetization induced by the residual primary magnetic minerals formed at the time the rocks cooled on the sea floor. Partially chloritized dacites, however, are characterized by large magnetic susceptibilities, low Koenigsberger ratios, and very low magnetic coercivities, consistent with initial dissolution of smaller, singledomain magnetic grains, indicating that intensely hydrothermally altered rocks are better paleomagnetic indicators than initially chloritized samples at the periphery of the hydrothermal systems.\\n The significant magnetic contrast between fresh and hydrothermally altered rocks, in addition to a thick layer (>300 m) of demagnetized rocks observed at Brothers volcano, confirms the empirical results that magnetic anomalies are important geophysical tools to determine the geometry of hydrothermal systems at submarine arc volcanoes.\",\"PeriodicalId\":11469,\"journal\":{\"name\":\"Economic Geology\",\"volume\":\"31 1\",\"pages\":\"\"},\"PeriodicalIF\":5.5000,\"publicationDate\":\"2023-04-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Economic Geology\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.5382/econgeo.5008\",\"RegionNum\":1,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOCHEMISTRY & GEOPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Economic Geology","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.5382/econgeo.5008","RegionNum":1,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOCHEMISTRY & GEOPHYSICS","Score":null,"Total":0}
引用次数: 1

摘要

海底热液系统的三维海底结构在很大程度上是未知的,特别是在弧火山。这些体系中火山岩的变化使它们的磁性发生了巨大的变化。在这里,我们首次对来自兄弟火山(Kermadec弧)的热液蚀变英安岩定向样品进行了全面的古地磁测量,这些样品是在国际海洋发现计划(IODP)第376次探险期间钻探的。这些数据使我们能够深入了解海底火山岩中磁性矿物的渐进演化,这些矿物受不同类型和程度的热液蚀变的影响,以响应不同的流体温度、化学性质和相关的矿化;从典型的相对低温与海水相互作用的初始绿岩化到受高温、酸性岩浆流体影响的极端蚀变岩石。热液蚀变样品的自然剩余磁化强度(10-4 ~ 10-2 a /m)明显低于未蚀变样品(1-10 a /m),表明原生钛磁铁矿颗粒在热液蚀变过程中被破坏。除了矿化网带附近的一小块区域外,没有观察到与热液蚀变有关的化学残余磁化,这与黄铁矿、金红石、亮绿石等抗磁性和/或顺磁性矿物的广泛形成一致,这些矿物不携带任何自然残余磁化。退磁实验表明,大多数定向样品具有稳定的特征剩余磁化,这是由岩石在海底冷却时形成的残余原生磁性矿物引起的。而部分绿泥化英安岩的磁化率大,Koenigsberger比低,磁顽力极低,与初始溶蚀较小的单畴磁性颗粒一致,表明强烈热液蚀变岩石比初始绿泥化样品在热液体系外围具有更好的古地磁指示作用。新鲜岩石和热液蚀变岩石之间的显著磁性对比,以及在兄弟火山观测到的厚层(>300 m)退磁岩石,证实了磁异常是确定海底弧火山热液系统几何形状的重要地球物理工具的经验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Effects of Hydrothermal Alteration and Mineralization on the Paleomagnetic Properties of Rocks from IODP Expedition 376 at Brothers Volcano
The 3-D subseafloor architecture of submarine hydrothermal systems is largely unknown, particularly at arc volcanoes. The alteration of volcanic rocks in these systems produces dramatic changes in their magnetic properties. Here, we present the first comprehensive study of paleomagnetic measurements from oriented samples of hydrothermally altered dacites from Brothers volcano (Kermadec arc), drilled during International Ocean Discovery Program (IODP) Expedition 376. These data have enabled insight into the progressive evolution of magnetic minerals in subseafloor volcanic rocks affected by variable types and degrees of hydrothermal alteration in response to varying fluid temperatures, chemistry, and associated mineralization; from initial chloritization typical of relatively low-temperature interaction with seawater to extremely altered rocks affected by higher-temperature, very acidic magmatic fluids. Hydrothermally altered samples show a significant reduction in natural remanent magnetization intensity (10–4 to 10–2 A/m) compared with unaltered samples (1–10 A/m), suggesting that primary titanomagnetite grains are destroyed during the hydrothermal alteration process. Except for a small region in proximity to the mineralized stockwork zone, no chemical remanent magnetization is observed in association with hydrothermal alteration, consistent with the widespread formation of diamagnetic and/or paramagnetic minerals such as pyrite, rutile, and leucoxene, which do not carry any natural remanent magnetization. Demagnetization experiments show that most of the oriented samples possess a stable characteristic remanent magnetization induced by the residual primary magnetic minerals formed at the time the rocks cooled on the sea floor. Partially chloritized dacites, however, are characterized by large magnetic susceptibilities, low Koenigsberger ratios, and very low magnetic coercivities, consistent with initial dissolution of smaller, singledomain magnetic grains, indicating that intensely hydrothermally altered rocks are better paleomagnetic indicators than initially chloritized samples at the periphery of the hydrothermal systems. The significant magnetic contrast between fresh and hydrothermally altered rocks, in addition to a thick layer (>300 m) of demagnetized rocks observed at Brothers volcano, confirms the empirical results that magnetic anomalies are important geophysical tools to determine the geometry of hydrothermal systems at submarine arc volcanoes.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
相关文献
二甲双胍通过HDAC6和FoxO3a转录调控肌肉生长抑制素诱导肌肉萎缩
IF 8.9 1区 医学Journal of Cachexia, Sarcopenia and MusclePub Date : 2021-11-02 DOI: 10.1002/jcsm.12833
Min Ju Kang, Ji Wook Moon, Jung Ok Lee, Ji Hae Kim, Eun Jeong Jung, Su Jin Kim, Joo Yeon Oh, Sang Woo Wu, Pu Reum Lee, Sun Hwa Park, Hyeon Soo Kim
具有疾病敏感单倍型的非亲属供体脐带血移植后的1型糖尿病
IF 3.2 3区 医学Journal of Diabetes InvestigationPub Date : 2022-11-02 DOI: 10.1111/jdi.13939
Kensuke Matsumoto, Taisuke Matsuyama, Ritsu Sumiyoshi, Matsuo Takuji, Tadashi Yamamoto, Ryosuke Shirasaki, Haruko Tashiro
封面:蛋白质组学分析确定IRSp53和fastin是PRV输出和直接细胞-细胞传播的关键
IF 3.4 4区 生物学ProteomicsPub Date : 2019-12-02 DOI: 10.1002/pmic.201970201
Fei-Long Yu, Huan Miao, Jinjin Xia, Fan Jia, Huadong Wang, Fuqiang Xu, Lin Guo
来源期刊
Economic Geology
Economic Geology 地学-地球化学与地球物理
CiteScore
10.00
自引率
6.90%
发文量
120
审稿时长
6 months
期刊介绍: The journal, now published semi-quarterly, was first published in 1905 by the Economic Geology Publishing Company (PUBCO), a not-for-profit company established for the purpose of publishing a periodical devoted to economic geology. On the founding of SEG in 1920, a cooperative arrangement between PUBCO and SEG made the journal the official organ of the Society, and PUBCO agreed to carry the Society''s name on the front cover under the heading "Bulletin of the Society of Economic Geologists". PUBCO and SEG continued to operate as cooperating but separate entities until 2001, when the Board of Directors of PUBCO and the Council of SEG, by unanimous consent, approved a formal agreement of merger. The former activities of the PUBCO Board of Directors are now carried out by a Publications Board, a new self-governing unit within SEG.
期刊最新文献
Cu-Au-Platinum Group Element Mineralization in the Mbesa Prospect, Southern Tanzania: Unconventional Magmatic Sulfides Epithermal Gold Discoveries in the Emerging Khundii Metallogenic Province, Southwest Mongolia Discriminating Superimposed Alteration Associated with Epigenetic Base and Precious Metal Vein Systems in the Rouyn-Noranda Mining District, Quebec; Implications for Exploration in Ancient Volcanic Districts Zircon and Whole-Rock Trace Element Indicators of Magmatic Hydration State and Oxidation State Discriminate Copper Ore-Forming from Barren Arc Magmas PLUME-GENERATED 90° STRESS CHANGE LINKED TO TRANSITION FROM RADIATING TO CIRCUMFERENTIAL DOLERITE DIKE SWARMS OF THE SIBERIAN TRAPS LARGE IGNEOUS PROVINCE AND TO EMPLACEMENT OF THE NORILSK-TALNAKH ORE DEPOSITS
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1