基于ANFIS的CMOS模拟神经模糊原型

O. Arellano-Cárdenas, H. Molina-Lozano, J. Moreno-Cadenas, F. Gómez-Castañeda, L. M. Flores-Nava
{"title":"基于ANFIS的CMOS模拟神经模糊原型","authors":"O. Arellano-Cárdenas, H. Molina-Lozano, J. Moreno-Cadenas, F. Gómez-Castañeda, L. M. Flores-Nava","doi":"10.1109/ISCAS.2000.856163","DOIUrl":null,"url":null,"abstract":"The architecture called ANFIS (Adaptive Neuro-Fuzzy Inference System) proposed by J.R. Jang (1993) is divided in five layers. Layers 1 and 2 in ANFIS were built by using a double-differential amplifier and a winner takes all circuit; to implement layers 3, 4 and 5, CMOS translinear blocks are used. The complete ANFIS architecture is implemented on a circuit board, using two CMOS circuits (N-well and 2 /spl mu/m minimum dimensions). The total system has two inputs with three membership functions each one, which generate a fuzzy space with nine subspaces and one single output. The system is used for classification of electrical signals.","PeriodicalId":6422,"journal":{"name":"2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2000-05-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"CMOS analog neurofuzzy prototype based on ANFIS\",\"authors\":\"O. Arellano-Cárdenas, H. Molina-Lozano, J. Moreno-Cadenas, F. Gómez-Castañeda, L. M. Flores-Nava\",\"doi\":\"10.1109/ISCAS.2000.856163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The architecture called ANFIS (Adaptive Neuro-Fuzzy Inference System) proposed by J.R. Jang (1993) is divided in five layers. Layers 1 and 2 in ANFIS were built by using a double-differential amplifier and a winner takes all circuit; to implement layers 3, 4 and 5, CMOS translinear blocks are used. The complete ANFIS architecture is implemented on a circuit board, using two CMOS circuits (N-well and 2 /spl mu/m minimum dimensions). The total system has two inputs with three membership functions each one, which generate a fuzzy space with nine subspaces and one single output. The system is used for classification of electrical signals.\",\"PeriodicalId\":6422,\"journal\":{\"name\":\"2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-05-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISCAS.2000.856163\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2000 IEEE International Symposium on Circuits and Systems. Emerging Technologies for the 21st Century. Proceedings (IEEE Cat No.00CH36353)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISCAS.2000.856163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 6

摘要

J.R. Jang(1993)提出的自适应神经模糊推理系统(ANFIS)分为五层。ANFIS的第1层和第2层采用双差分放大器和赢家通吃电路构建;为了实现第3层、第4层和第5层,使用了CMOS线性块。完整的ANFIS架构在电路板上实现,使用两个CMOS电路(最小尺寸为n阱和2 /spl mu/m)。整个系统有两个输入,每个输入有三个隶属函数,产生一个有九个子空间和一个输出的模糊空间。该系统用于电信号的分类。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CMOS analog neurofuzzy prototype based on ANFIS
The architecture called ANFIS (Adaptive Neuro-Fuzzy Inference System) proposed by J.R. Jang (1993) is divided in five layers. Layers 1 and 2 in ANFIS were built by using a double-differential amplifier and a winner takes all circuit; to implement layers 3, 4 and 5, CMOS translinear blocks are used. The complete ANFIS architecture is implemented on a circuit board, using two CMOS circuits (N-well and 2 /spl mu/m minimum dimensions). The total system has two inputs with three membership functions each one, which generate a fuzzy space with nine subspaces and one single output. The system is used for classification of electrical signals.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A novel class A CMOS current conveyor Adaptive envelope-constrained filter design Phenomenological model of false lock in the sampling phase-locked loop A novel two-port 6T CMOS SRAM cell structure for low-voltage VLSI SRAM with single-bit-line simultaneous read-and-write access (SBLSRWA) capability Real-time calculus for scheduling hard real-time systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1