分布式数据中心自适应采样网络物理系统

IF 2.2 4区 计算机科学 Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE ACM Transactions on Autonomous and Adaptive Systems Pub Date : 2015-01-14 DOI:10.1145/2644820
Eun Kyung Lee, H. Viswanathan, D. Pompili
{"title":"分布式数据中心自适应采样网络物理系统","authors":"Eun Kyung Lee, H. Viswanathan, D. Pompili","doi":"10.1145/2644820","DOIUrl":null,"url":null,"abstract":"A data-centric joint adaptive sampling and sleep scheduling solution, SILENCE, for autonomic sensor-based systems that monitor and reconstruct physical or environmental phenomena is proposed. Adaptive sampling and sleep scheduling can help realize the much needed resource efficiency by minimizing the communication and processing overhead in densely deployed autonomic sensor-based systems. The proposed solution exploits the spatiotemporal correlation in sensed data and eliminates redundancy in transmitted data through selective representation without compromising on accuracy of reconstruction of the monitored phenomenon at a remote monitor node. Differently from existing adaptive sampling solutions, SILENCE employs temporal causality analysis to not only track the variation in the underlying phenomenon but also its cause and direction of propagation in the field. The causality analysis and the same correlations are then leveraged for adaptive sleep scheduling aimed at saving energy in wireless sensor networks (WSNs). SILENCE outperforms traditional adaptive sampling solutions as well as the recently proposed compressive sampling techniques. Real experiments were performed on a WSN testbed monitoring temperature and humidity distribution in a rack of servers, and the simulations were performed on TOSSIM, the TinyOS simulator.","PeriodicalId":50919,"journal":{"name":"ACM Transactions on Autonomous and Adaptive Systems","volume":"30 1","pages":"21:1-21:27"},"PeriodicalIF":2.2000,"publicationDate":"2015-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Distributed Data-Centric Adaptive Sampling for Cyber-Physical Systems\",\"authors\":\"Eun Kyung Lee, H. Viswanathan, D. Pompili\",\"doi\":\"10.1145/2644820\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A data-centric joint adaptive sampling and sleep scheduling solution, SILENCE, for autonomic sensor-based systems that monitor and reconstruct physical or environmental phenomena is proposed. Adaptive sampling and sleep scheduling can help realize the much needed resource efficiency by minimizing the communication and processing overhead in densely deployed autonomic sensor-based systems. The proposed solution exploits the spatiotemporal correlation in sensed data and eliminates redundancy in transmitted data through selective representation without compromising on accuracy of reconstruction of the monitored phenomenon at a remote monitor node. Differently from existing adaptive sampling solutions, SILENCE employs temporal causality analysis to not only track the variation in the underlying phenomenon but also its cause and direction of propagation in the field. The causality analysis and the same correlations are then leveraged for adaptive sleep scheduling aimed at saving energy in wireless sensor networks (WSNs). SILENCE outperforms traditional adaptive sampling solutions as well as the recently proposed compressive sampling techniques. Real experiments were performed on a WSN testbed monitoring temperature and humidity distribution in a rack of servers, and the simulations were performed on TOSSIM, the TinyOS simulator.\",\"PeriodicalId\":50919,\"journal\":{\"name\":\"ACM Transactions on Autonomous and Adaptive Systems\",\"volume\":\"30 1\",\"pages\":\"21:1-21:27\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2015-01-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ACM Transactions on Autonomous and Adaptive Systems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1145/2644820\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACM Transactions on Autonomous and Adaptive Systems","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1145/2644820","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 6

摘要

提出了一种以数据为中心的联合自适应采样和睡眠调度解决方案SILENCE,用于监测和重建物理或环境现象的基于自主传感器的系统。在密集部署的自主传感器系统中,自适应采样和睡眠调度可以通过最小化通信和处理开销来帮助实现急需的资源效率。该方案利用遥感数据的时空相关性,通过选择性表示消除传输数据中的冗余,同时不影响远程监测节点对监测现象的重建精度。与现有的自适应采样解决方案不同,SILENCE采用时间因果分析,不仅可以跟踪潜在现象的变化,还可以跟踪其在现场传播的原因和方向。然后利用因果分析和相同的相关性进行自适应睡眠调度,目的是在无线传感器网络(WSNs)中节省能量。SILENCE优于传统的自适应采样解决方案以及最近提出的压缩采样技术。在监测服务器机架温度和湿度分布的WSN试验台上进行了实际实验,并在TinyOS模拟器TOSSIM上进行了仿真。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Distributed Data-Centric Adaptive Sampling for Cyber-Physical Systems
A data-centric joint adaptive sampling and sleep scheduling solution, SILENCE, for autonomic sensor-based systems that monitor and reconstruct physical or environmental phenomena is proposed. Adaptive sampling and sleep scheduling can help realize the much needed resource efficiency by minimizing the communication and processing overhead in densely deployed autonomic sensor-based systems. The proposed solution exploits the spatiotemporal correlation in sensed data and eliminates redundancy in transmitted data through selective representation without compromising on accuracy of reconstruction of the monitored phenomenon at a remote monitor node. Differently from existing adaptive sampling solutions, SILENCE employs temporal causality analysis to not only track the variation in the underlying phenomenon but also its cause and direction of propagation in the field. The causality analysis and the same correlations are then leveraged for adaptive sleep scheduling aimed at saving energy in wireless sensor networks (WSNs). SILENCE outperforms traditional adaptive sampling solutions as well as the recently proposed compressive sampling techniques. Real experiments were performed on a WSN testbed monitoring temperature and humidity distribution in a rack of servers, and the simulations were performed on TOSSIM, the TinyOS simulator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
ACM Transactions on Autonomous and Adaptive Systems
ACM Transactions on Autonomous and Adaptive Systems 工程技术-计算机:理论方法
CiteScore
4.80
自引率
7.40%
发文量
9
审稿时长
>12 weeks
期刊介绍: TAAS addresses research on autonomous and adaptive systems being undertaken by an increasingly interdisciplinary research community -- and provides a common platform under which this work can be published and disseminated. TAAS encourages contributions aimed at supporting the understanding, development, and control of such systems and of their behaviors. TAAS addresses research on autonomous and adaptive systems being undertaken by an increasingly interdisciplinary research community - and provides a common platform under which this work can be published and disseminated. TAAS encourages contributions aimed at supporting the understanding, development, and control of such systems and of their behaviors. Contributions are expected to be based on sound and innovative theoretical models, algorithms, engineering and programming techniques, infrastructures and systems, or technological and application experiences.
期刊最新文献
IBAQ: Frequency-Domain Backdoor Attack Threatening Autonomous Driving via Quadratic Phase Adaptive Scheduling of High-Availability Drone Swarms for Congestion Alleviation in Connected Automated Vehicles Self-Supervised Machine Learning Framework for Online Container Security Attack Detection A Framework for Simultaneous Task Allocation and Planning under Uncertainty Adaptation in Edge Computing: A review on design principles and research challenges
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1