{"title":"玻璃通孔激光诱导深度蚀刻工艺的研究进展","authors":"Li Chen, Heng Wu, Mingchuan Zhang, Feng Jiang, Tian Yu, Daquan Yu","doi":"10.1109/ICEPT47577.2019.245208","DOIUrl":null,"url":null,"abstract":"2.5D glass interposer technology based on through glass via (TGV) becomes a hot research topic on account of good electrical property and CTE (coefficient of thermal expansion) mismatch [1]. In this paper, the Laser-Induced Deep Etching (LIDE) technology is used to manufacture TGVs on glass substrate. The LIDE process can be mainly divided into two steps: Initially, picosecond laser is used to modified the glass substrate. Then, using 10% HF etch the modified glass substrate. On account of denaturation of the laser irradiation area, the area where is exposed to the laser will be etched more quickly than unexposed area in the process of wet etching. In consideration of the properties of various glass, SCHOTT AF 32® eco glass and CORNING HPFS 7980 fused silica glass is selected as the substrate of this study. The result show that the LIDE process is a promising high-speed TGVs manufacturing process which can fabricate TGV of high verticality (the taper angle is approximately 9° on AF 32® eco glass and 1° on CORNING HPFS 7980 fused silica glass) at a high speed (289 TGV/s). Ultimately, the stability of the break strength of the LIDE processed glass substrates is verified by the results of ANSYS simulation and three-point bending test.","PeriodicalId":6676,"journal":{"name":"2019 20th International Conference on Electronic Packaging Technology(ICEPT)","volume":"28 1","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2019-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Development of Laser-Induced Deep Etching Process for Through Glass Via\",\"authors\":\"Li Chen, Heng Wu, Mingchuan Zhang, Feng Jiang, Tian Yu, Daquan Yu\",\"doi\":\"10.1109/ICEPT47577.2019.245208\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"2.5D glass interposer technology based on through glass via (TGV) becomes a hot research topic on account of good electrical property and CTE (coefficient of thermal expansion) mismatch [1]. In this paper, the Laser-Induced Deep Etching (LIDE) technology is used to manufacture TGVs on glass substrate. The LIDE process can be mainly divided into two steps: Initially, picosecond laser is used to modified the glass substrate. Then, using 10% HF etch the modified glass substrate. On account of denaturation of the laser irradiation area, the area where is exposed to the laser will be etched more quickly than unexposed area in the process of wet etching. In consideration of the properties of various glass, SCHOTT AF 32® eco glass and CORNING HPFS 7980 fused silica glass is selected as the substrate of this study. The result show that the LIDE process is a promising high-speed TGVs manufacturing process which can fabricate TGV of high verticality (the taper angle is approximately 9° on AF 32® eco glass and 1° on CORNING HPFS 7980 fused silica glass) at a high speed (289 TGV/s). Ultimately, the stability of the break strength of the LIDE processed glass substrates is verified by the results of ANSYS simulation and three-point bending test.\",\"PeriodicalId\":6676,\"journal\":{\"name\":\"2019 20th International Conference on Electronic Packaging Technology(ICEPT)\",\"volume\":\"28 1\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-08-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 20th International Conference on Electronic Packaging Technology(ICEPT)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEPT47577.2019.245208\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 20th International Conference on Electronic Packaging Technology(ICEPT)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEPT47577.2019.245208","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3
摘要
基于透玻璃通孔(TGV)的2.5D玻璃中间体技术因其良好的电性能和热膨胀系数(CTE)失配而成为研究热点[1]。本文采用激光诱导深度刻蚀(LIDE)技术在玻璃基板上制备tgv。LIDE工艺主要分为两个步骤:首先,使用皮秒激光对玻璃基板进行修饰。然后,用10% HF蚀刻改性玻璃基板。在湿法蚀刻过程中,由于激光照射区域的变性,激光照射区域的蚀刻速度比未照射区域快。考虑到各种玻璃的性能,我们选择SCHOTT AF 32®生态玻璃和康宁HPFS 7980熔融石英玻璃作为本研究的基板。结果表明,LIDE工艺是一种很有前途的高速TGV制造工艺,可在高速(289 TGV/s)下制造高垂直度TGV (AF 32®生态玻璃的锥度角约为9°,康宁HPFS 7980熔融石英玻璃的锥度角约为1°)。最后,通过ANSYS仿真和三点弯曲试验结果验证了LIDE加工玻璃基板断裂强度的稳定性。
Development of Laser-Induced Deep Etching Process for Through Glass Via
2.5D glass interposer technology based on through glass via (TGV) becomes a hot research topic on account of good electrical property and CTE (coefficient of thermal expansion) mismatch [1]. In this paper, the Laser-Induced Deep Etching (LIDE) technology is used to manufacture TGVs on glass substrate. The LIDE process can be mainly divided into two steps: Initially, picosecond laser is used to modified the glass substrate. Then, using 10% HF etch the modified glass substrate. On account of denaturation of the laser irradiation area, the area where is exposed to the laser will be etched more quickly than unexposed area in the process of wet etching. In consideration of the properties of various glass, SCHOTT AF 32® eco glass and CORNING HPFS 7980 fused silica glass is selected as the substrate of this study. The result show that the LIDE process is a promising high-speed TGVs manufacturing process which can fabricate TGV of high verticality (the taper angle is approximately 9° on AF 32® eco glass and 1° on CORNING HPFS 7980 fused silica glass) at a high speed (289 TGV/s). Ultimately, the stability of the break strength of the LIDE processed glass substrates is verified by the results of ANSYS simulation and three-point bending test.