航空薄壁螺旋锥齿轮行波振动特性的计算机分析

IF 1.4 4区 工程技术 Q3 ENGINEERING, MECHANICAL Journal of Strain Analysis for Engineering Design Pub Date : 2022-11-08 DOI:10.1177/03093247221133602
Qiyong Yang, Chaosheng Song, Siyuan Liu
{"title":"航空薄壁螺旋锥齿轮行波振动特性的计算机分析","authors":"Qiyong Yang, Chaosheng Song, Siyuan Liu","doi":"10.1177/03093247221133602","DOIUrl":null,"url":null,"abstract":"Aviation thin-walled spiral bevel gears are prone to traveling wave vibration. This study proposes an efficient traveling wave vibration analysis method based on the contact finite element model of the spiral bevel gears. The excitation vibration modes under the typical working condition is obtained through comparison to the modal analysis and harmonic response analysis. The resonance modes and frequencies are determined by Campbell diagram. The effect of thin-walled structure parameters on the traveling wave vibration of aviation spiral bevel gears is investigated. The results show that the traveling wave vibration of the gear is easily excited by the forward traveling wave and backward traveling wave resonance of 2nd nodal diameter/1st nodal circle, forward traveling wave resonance of the 6th nodal diameter, backward traveling wave resonance of 7th nodal diameter. The increase of gear blank web thickness will decrease peak stresses. The increase of conical web thickness and angle will decrease the peak stresses of compound vibration. The adjacent modals will aggravate the vibration. The decrease of the modal frequency spacing will increase the peak stresses.","PeriodicalId":50038,"journal":{"name":"Journal of Strain Analysis for Engineering Design","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Computerized analysis of traveling wave vibration characteristics of aviation thin-walled spiral bevel gears\",\"authors\":\"Qiyong Yang, Chaosheng Song, Siyuan Liu\",\"doi\":\"10.1177/03093247221133602\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aviation thin-walled spiral bevel gears are prone to traveling wave vibration. This study proposes an efficient traveling wave vibration analysis method based on the contact finite element model of the spiral bevel gears. The excitation vibration modes under the typical working condition is obtained through comparison to the modal analysis and harmonic response analysis. The resonance modes and frequencies are determined by Campbell diagram. The effect of thin-walled structure parameters on the traveling wave vibration of aviation spiral bevel gears is investigated. The results show that the traveling wave vibration of the gear is easily excited by the forward traveling wave and backward traveling wave resonance of 2nd nodal diameter/1st nodal circle, forward traveling wave resonance of the 6th nodal diameter, backward traveling wave resonance of 7th nodal diameter. The increase of gear blank web thickness will decrease peak stresses. The increase of conical web thickness and angle will decrease the peak stresses of compound vibration. The adjacent modals will aggravate the vibration. The decrease of the modal frequency spacing will increase the peak stresses.\",\"PeriodicalId\":50038,\"journal\":{\"name\":\"Journal of Strain Analysis for Engineering Design\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-11-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Strain Analysis for Engineering Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/03093247221133602\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Strain Analysis for Engineering Design","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/03093247221133602","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 2

摘要

航空薄壁螺旋锥齿轮易发生行波振动。提出了一种基于螺旋锥齿轮接触有限元模型的行波振动分析方法。通过与模态分析和谐波响应分析的对比,得到了典型工况下的激励振动模态。共振模式和频率由坎贝尔图确定。研究了薄壁结构参数对航空螺旋锥齿轮行波振动的影响。结果表明:2节径/1节圆的前向行波和后向行波共振、6节径的前向行波共振、7节径的后向行波共振容易激发齿轮的行波振动;增大齿轮毛坯腹板厚度会降低峰值应力。锥形腹板厚度和角度的增加会降低复合振动的峰值应力。相邻模态会加剧振动。模态频率间隔的减小会增加峰值应力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Computerized analysis of traveling wave vibration characteristics of aviation thin-walled spiral bevel gears
Aviation thin-walled spiral bevel gears are prone to traveling wave vibration. This study proposes an efficient traveling wave vibration analysis method based on the contact finite element model of the spiral bevel gears. The excitation vibration modes under the typical working condition is obtained through comparison to the modal analysis and harmonic response analysis. The resonance modes and frequencies are determined by Campbell diagram. The effect of thin-walled structure parameters on the traveling wave vibration of aviation spiral bevel gears is investigated. The results show that the traveling wave vibration of the gear is easily excited by the forward traveling wave and backward traveling wave resonance of 2nd nodal diameter/1st nodal circle, forward traveling wave resonance of the 6th nodal diameter, backward traveling wave resonance of 7th nodal diameter. The increase of gear blank web thickness will decrease peak stresses. The increase of conical web thickness and angle will decrease the peak stresses of compound vibration. The adjacent modals will aggravate the vibration. The decrease of the modal frequency spacing will increase the peak stresses.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Strain Analysis for Engineering Design
Journal of Strain Analysis for Engineering Design 工程技术-材料科学:表征与测试
CiteScore
3.50
自引率
6.20%
发文量
25
审稿时长
>12 weeks
期刊介绍: The Journal of Strain Analysis for Engineering Design provides a forum for work relating to the measurement and analysis of strain that is appropriate to engineering design and practice. "Since launching in 1965, The Journal of Strain Analysis has been a collegiate effort, dedicated to providing exemplary service to our authors. We welcome contributions related to analytical, experimental, and numerical techniques for the analysis and/or measurement of stress and/or strain, or studies of relevant material properties and failure modes. Our international Editorial Board contains experts in all of these fields and is keen to encourage papers on novel techniques and innovative applications." Professor Eann Patterson - University of Liverpool, UK This journal is a member of the Committee on Publication Ethics (COPE).
期刊最新文献
Anti-plane analysis of a crack terminating at interface of the isotropic half-planes bonded to intact orthotropic layers Compressive performance of paper honeycomb core layer with double-hole in cell walls A novel multiaxial fatigue life prediction model based on the critical plane theory and machine-learning method Non-linear analysis of the flexural-torsional stability of slender tropical glulam beams Approximate methods for contact problems involving beams
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1