利用深度学习减少COVID-19检测的错误预测

B. Bhowmik, S. Varna, Adarsh Kumar, Rahul Kumar
{"title":"利用深度学习减少COVID-19检测的错误预测","authors":"B. Bhowmik, S. Varna, Adarsh Kumar, Rahul Kumar","doi":"10.1109/MWSCAS47672.2021.9531825","DOIUrl":null,"url":null,"abstract":"This paper proposes a custom deep neural network-based scheme for coronavirus disease 2019 (COVID-19) detection. The proposed method takes X-ray images that use transfer learning techniques on pre-trained models. One objective of this work is to quickening the detection of the virus. Another goal is to reduce the number of falsely detected cases by a significant margin. The experimental setup demonstrates promising results on the selected dataset, which achieve up to 99.74%, 99.69%, 98.80% as classification, precision, and recall accuracy.","PeriodicalId":6792,"journal":{"name":"2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS)","volume":"1 1","pages":"404-407"},"PeriodicalIF":0.0000,"publicationDate":"2021-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Reducing False Prediction On COVID-19 Detection Using Deep Learning\",\"authors\":\"B. Bhowmik, S. Varna, Adarsh Kumar, Rahul Kumar\",\"doi\":\"10.1109/MWSCAS47672.2021.9531825\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes a custom deep neural network-based scheme for coronavirus disease 2019 (COVID-19) detection. The proposed method takes X-ray images that use transfer learning techniques on pre-trained models. One objective of this work is to quickening the detection of the virus. Another goal is to reduce the number of falsely detected cases by a significant margin. The experimental setup demonstrates promising results on the selected dataset, which achieve up to 99.74%, 99.69%, 98.80% as classification, precision, and recall accuracy.\",\"PeriodicalId\":6792,\"journal\":{\"name\":\"2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS)\",\"volume\":\"1 1\",\"pages\":\"404-407\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-08-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MWSCAS47672.2021.9531825\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 IEEE International Midwest Symposium on Circuits and Systems (MWSCAS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MWSCAS47672.2021.9531825","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

提出了一种基于自定义深度神经网络的2019冠状病毒病(COVID-19)检测方案。所提出的方法采用在预训练模型上使用迁移学习技术的x射线图像。这项工作的目的之一是加快对这种病毒的检测。另一个目标是大幅度减少误检病例的数量。实验结果表明,所选数据集的分类精度、查准率和查全率分别达到99.74%、99.69%和98.80%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Reducing False Prediction On COVID-19 Detection Using Deep Learning
This paper proposes a custom deep neural network-based scheme for coronavirus disease 2019 (COVID-19) detection. The proposed method takes X-ray images that use transfer learning techniques on pre-trained models. One objective of this work is to quickening the detection of the virus. Another goal is to reduce the number of falsely detected cases by a significant margin. The experimental setup demonstrates promising results on the selected dataset, which achieve up to 99.74%, 99.69%, 98.80% as classification, precision, and recall accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hybrid Frequency Domain Simulation Method to Speed-up Analysis of Injection Locked Oscillators SaFIoV: A Secure and Fast Communication in Fog-based Internet-of-Vehicles using SDN and Blockchain Capacitor-Less Memristive Integrate-and-Fire Neuron with Stochastic Behavior Polynomial Filters with Controllable Overshoot In Their Step Transient Responses A low kickback noise and low power dynamic comparator
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1