Benjamin D. Hill, Brandon A. Furman, Emma E. German, Jacob Rigby, R. Berke
{"title":"在基于振动的高周疲劳试验中消除应变片的非接触应变测量","authors":"Benjamin D. Hill, Brandon A. Furman, Emma E. German, Jacob Rigby, R. Berke","doi":"10.1177/03093247221076765","DOIUrl":null,"url":null,"abstract":"Digital Image Correlation (DIC) is a non-contacting, camera-based technique that calculates full-field displacements and strains by comparing digital images taken before and after an object is deformed. During a vibration-based fatigue test, DIC has an advantage over strain gages in that it is non-contacting and does not accumulate damage during the test. In this work, DIC was implemented to build strain-velocity calibration curves as an alternative to strain gages. First, a curve fit was applied to DIC displacements and strains along the free edge of the plate using an approximate solution for the mode shape of a cantilevered plate. In total, the curve fits were applied to three sets of DIC data: (i) the raw strains calculated with DIC; (ii) the in-plane U-displacements from which the raw DIC strains were computed; and (iii) the out-of-plane W-displacements observed in the direction of motion. Second, classical plate theory was used to calculate strains by taking derivatives of each of the applied curve fits. Third, the peak strains from each curve fit were used to build the strain-velocity calibration curves. Further, a Monte Carlo Method uncertainty analysis was performed to estimate the uncertainty of the curve fitted DIC and strain gage measurements. Of the three curve-fits, the DIC strains derived from the out-of-plane displacements provided the most precise measurements relative to a strain gage at all excitation levels used to build the calibration curves.","PeriodicalId":50038,"journal":{"name":"Journal of Strain Analysis for Engineering Design","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2022-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Non-contact strain measurement to eliminate strain gages in vibration-based high cycle fatigue testing\",\"authors\":\"Benjamin D. Hill, Brandon A. Furman, Emma E. German, Jacob Rigby, R. Berke\",\"doi\":\"10.1177/03093247221076765\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Digital Image Correlation (DIC) is a non-contacting, camera-based technique that calculates full-field displacements and strains by comparing digital images taken before and after an object is deformed. During a vibration-based fatigue test, DIC has an advantage over strain gages in that it is non-contacting and does not accumulate damage during the test. In this work, DIC was implemented to build strain-velocity calibration curves as an alternative to strain gages. First, a curve fit was applied to DIC displacements and strains along the free edge of the plate using an approximate solution for the mode shape of a cantilevered plate. In total, the curve fits were applied to three sets of DIC data: (i) the raw strains calculated with DIC; (ii) the in-plane U-displacements from which the raw DIC strains were computed; and (iii) the out-of-plane W-displacements observed in the direction of motion. Second, classical plate theory was used to calculate strains by taking derivatives of each of the applied curve fits. Third, the peak strains from each curve fit were used to build the strain-velocity calibration curves. Further, a Monte Carlo Method uncertainty analysis was performed to estimate the uncertainty of the curve fitted DIC and strain gage measurements. Of the three curve-fits, the DIC strains derived from the out-of-plane displacements provided the most precise measurements relative to a strain gage at all excitation levels used to build the calibration curves.\",\"PeriodicalId\":50038,\"journal\":{\"name\":\"Journal of Strain Analysis for Engineering Design\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2022-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Strain Analysis for Engineering Design\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1177/03093247221076765\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, MECHANICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Strain Analysis for Engineering Design","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1177/03093247221076765","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
Non-contact strain measurement to eliminate strain gages in vibration-based high cycle fatigue testing
Digital Image Correlation (DIC) is a non-contacting, camera-based technique that calculates full-field displacements and strains by comparing digital images taken before and after an object is deformed. During a vibration-based fatigue test, DIC has an advantage over strain gages in that it is non-contacting and does not accumulate damage during the test. In this work, DIC was implemented to build strain-velocity calibration curves as an alternative to strain gages. First, a curve fit was applied to DIC displacements and strains along the free edge of the plate using an approximate solution for the mode shape of a cantilevered plate. In total, the curve fits were applied to three sets of DIC data: (i) the raw strains calculated with DIC; (ii) the in-plane U-displacements from which the raw DIC strains were computed; and (iii) the out-of-plane W-displacements observed in the direction of motion. Second, classical plate theory was used to calculate strains by taking derivatives of each of the applied curve fits. Third, the peak strains from each curve fit were used to build the strain-velocity calibration curves. Further, a Monte Carlo Method uncertainty analysis was performed to estimate the uncertainty of the curve fitted DIC and strain gage measurements. Of the three curve-fits, the DIC strains derived from the out-of-plane displacements provided the most precise measurements relative to a strain gage at all excitation levels used to build the calibration curves.
期刊介绍:
The Journal of Strain Analysis for Engineering Design provides a forum for work relating to the measurement and analysis of strain that is appropriate to engineering design and practice.
"Since launching in 1965, The Journal of Strain Analysis has been a collegiate effort, dedicated to providing exemplary service to our authors. We welcome contributions related to analytical, experimental, and numerical techniques for the analysis and/or measurement of stress and/or strain, or studies of relevant material properties and failure modes. Our international Editorial Board contains experts in all of these fields and is keen to encourage papers on novel techniques and innovative applications." Professor Eann Patterson - University of Liverpool, UK
This journal is a member of the Committee on Publication Ethics (COPE).