气溶胶吸湿生长作为含光阱-腔衰荡法测定火焰中痕量和超痕量磷的新因素

M. Doroodmand, F. Ghasemi
{"title":"气溶胶吸湿生长作为含光阱-腔衰荡法测定火焰中痕量和超痕量磷的新因素","authors":"M. Doroodmand, F. Ghasemi","doi":"10.4172/2155-9872.1000360","DOIUrl":null,"url":null,"abstract":"A new method has been introduced based on aerosol hygroscopic growth as a new factor for trace and ultra-trace determination of phosphorous in flame containing optical trapping-cavity ring down aerosol extinction (emission) spectrometer (OT-CRD-AES). In this study, a cavity ring down has been designed using hydrogen and air as fuel and oxidant during introduction of the aerosols containing phosphorous species using an ultrasonic generator (humidifier) from an acidic solution by a flow rate of N2 , followed by detection of the Mie scattering using a charged coupling device (CCD) system. Parameters having strong influence during following scattering of the aerosols during their hygroscopic growth inside the humidified flame (H2 /air), include: influence and amount of Na+ as radiation buffer (as light source), flow rates of H2 , air and N2 , kind and concentrations of acid, evaluation of the aerosols inside flame, etc. These parameters were optimized using simplex and one at a time methods. Based on the figures of merit under optimized condition, two linear calibration curves with reverse slopes were evaluated between 10.0 - 250.0 ng mL-1 and 1.0 - 20.0 µg mL-1 with correlation coefficients (R2 ) the same as 0.999 and 0.998, respectively. The calibration sensitivities were also estimated to 57.46 and 0.348 (a.u), respectively, with detection limit of 5.0 ng mL-1. The mechanism of the radiation (Mie scattering) was also evidenced based on i) dependency of the scattered radiations to the quantity of an alkali ions such as Na+ as well as the humidity, ii) presence of acceptable correlation between the response of the cavity with turbidometry, iii) observation of blue shift from green (color related to the luminescence of HPO* in H2 /air flame) to blue (scattered radiation) and finally iv) effect of hydration number during stability and growth of the aerosols inside the flames. No serious interference was evaluated during analysis of at least 500-fold excess of various foreign species. However, the only observed interference was evaluated during introduction of 200-fold excess of SO4 2-. Good correlation was also evaluated between the results obtained from this technique and ion exchange chromatography during analysis of wastewater samples that clearly revealed the reliability of this method for phosphorous detection and determination at µg mL-1 and ng mL-1 levels.","PeriodicalId":14865,"journal":{"name":"Journal of analytical and bioanalytical techniques","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2017-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Aerosol Hygroscopic Growth as a New Factor for Trace and Ultra-TraceDetermination of Phosphorous in Flame Containing Optical Trapping-CavityRing-Down Spectroscopy\",\"authors\":\"M. Doroodmand, F. Ghasemi\",\"doi\":\"10.4172/2155-9872.1000360\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A new method has been introduced based on aerosol hygroscopic growth as a new factor for trace and ultra-trace determination of phosphorous in flame containing optical trapping-cavity ring down aerosol extinction (emission) spectrometer (OT-CRD-AES). In this study, a cavity ring down has been designed using hydrogen and air as fuel and oxidant during introduction of the aerosols containing phosphorous species using an ultrasonic generator (humidifier) from an acidic solution by a flow rate of N2 , followed by detection of the Mie scattering using a charged coupling device (CCD) system. Parameters having strong influence during following scattering of the aerosols during their hygroscopic growth inside the humidified flame (H2 /air), include: influence and amount of Na+ as radiation buffer (as light source), flow rates of H2 , air and N2 , kind and concentrations of acid, evaluation of the aerosols inside flame, etc. These parameters were optimized using simplex and one at a time methods. Based on the figures of merit under optimized condition, two linear calibration curves with reverse slopes were evaluated between 10.0 - 250.0 ng mL-1 and 1.0 - 20.0 µg mL-1 with correlation coefficients (R2 ) the same as 0.999 and 0.998, respectively. The calibration sensitivities were also estimated to 57.46 and 0.348 (a.u), respectively, with detection limit of 5.0 ng mL-1. The mechanism of the radiation (Mie scattering) was also evidenced based on i) dependency of the scattered radiations to the quantity of an alkali ions such as Na+ as well as the humidity, ii) presence of acceptable correlation between the response of the cavity with turbidometry, iii) observation of blue shift from green (color related to the luminescence of HPO* in H2 /air flame) to blue (scattered radiation) and finally iv) effect of hydration number during stability and growth of the aerosols inside the flames. No serious interference was evaluated during analysis of at least 500-fold excess of various foreign species. However, the only observed interference was evaluated during introduction of 200-fold excess of SO4 2-. Good correlation was also evaluated between the results obtained from this technique and ion exchange chromatography during analysis of wastewater samples that clearly revealed the reliability of this method for phosphorous detection and determination at µg mL-1 and ng mL-1 levels.\",\"PeriodicalId\":14865,\"journal\":{\"name\":\"Journal of analytical and bioanalytical techniques\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-10\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of analytical and bioanalytical techniques\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4172/2155-9872.1000360\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of analytical and bioanalytical techniques","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4172/2155-9872.1000360","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

介绍了一种以气溶胶吸湿生长为新因子的火焰中痕量和超痕量磷的测定方法-光学捕获腔环形气溶胶消光(发射)光谱仪。在本研究中,利用超声波发生器(加湿器)以氮气的流速从酸性溶液中引入含磷气溶胶,并利用带电耦合装置(CCD)系统检测Mie散射,以氢气和空气作为燃料和氧化剂设计了一个腔环。对气溶胶在加湿火焰(H2 /空气)内吸湿生长过程中后续散射影响较大的参数包括:作为辐射缓冲剂(作为光源)的Na+的影响和数量、H2、空气和N2的流速、酸的种类和浓度、火焰内气溶胶的评价等。采用单纯形法和一次一个法对这些参数进行了优化。以优化条件下的优值图为基础,在10.0 ~ 250.0 ng mL-1和1.0 ~ 20.0µg mL-1范围内建立了具有反斜率的线性校准曲线,相关系数(R2)分别为0.999和0.998。校准灵敏度分别为57.46和0.348 (a.u),检出限为5.0 ng mL-1。辐射(Mie散射)的机制也得到了证明,基于i)散射辐射与碱离子(如Na+)的数量以及湿度的依赖关系,ii)在腔的响应与浊度测量之间存在可接受的相关性。iii)观察蓝色从绿色(与H2 /空气火焰中HPO*的发光有关的颜色)到蓝色(散射辐射)的转变,最后iv)火焰内气溶胶在稳定和生长过程中水化数的影响。在分析各种外来种至少超过500倍时,没有评估严重的干扰。然而,唯一观察到的干扰是在引入超过200倍的so42 -时评估的。在废水样品分析中,该技术与离子交换色谱法的结果之间也有良好的相关性,这清楚地表明该方法在µg mL-1和ng mL-1水平下的磷检测和测定是可靠的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Aerosol Hygroscopic Growth as a New Factor for Trace and Ultra-TraceDetermination of Phosphorous in Flame Containing Optical Trapping-CavityRing-Down Spectroscopy
A new method has been introduced based on aerosol hygroscopic growth as a new factor for trace and ultra-trace determination of phosphorous in flame containing optical trapping-cavity ring down aerosol extinction (emission) spectrometer (OT-CRD-AES). In this study, a cavity ring down has been designed using hydrogen and air as fuel and oxidant during introduction of the aerosols containing phosphorous species using an ultrasonic generator (humidifier) from an acidic solution by a flow rate of N2 , followed by detection of the Mie scattering using a charged coupling device (CCD) system. Parameters having strong influence during following scattering of the aerosols during their hygroscopic growth inside the humidified flame (H2 /air), include: influence and amount of Na+ as radiation buffer (as light source), flow rates of H2 , air and N2 , kind and concentrations of acid, evaluation of the aerosols inside flame, etc. These parameters were optimized using simplex and one at a time methods. Based on the figures of merit under optimized condition, two linear calibration curves with reverse slopes were evaluated between 10.0 - 250.0 ng mL-1 and 1.0 - 20.0 µg mL-1 with correlation coefficients (R2 ) the same as 0.999 and 0.998, respectively. The calibration sensitivities were also estimated to 57.46 and 0.348 (a.u), respectively, with detection limit of 5.0 ng mL-1. The mechanism of the radiation (Mie scattering) was also evidenced based on i) dependency of the scattered radiations to the quantity of an alkali ions such as Na+ as well as the humidity, ii) presence of acceptable correlation between the response of the cavity with turbidometry, iii) observation of blue shift from green (color related to the luminescence of HPO* in H2 /air flame) to blue (scattered radiation) and finally iv) effect of hydration number during stability and growth of the aerosols inside the flames. No serious interference was evaluated during analysis of at least 500-fold excess of various foreign species. However, the only observed interference was evaluated during introduction of 200-fold excess of SO4 2-. Good correlation was also evaluated between the results obtained from this technique and ion exchange chromatography during analysis of wastewater samples that clearly revealed the reliability of this method for phosphorous detection and determination at µg mL-1 and ng mL-1 levels.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Elucidation of unknown pharmaceutical degradation products: Structures and pathways Ionic liquids as stationary phase in GC: An innovation for improving food, environmental and petrochemical analysis Leaching of Some Essential and Non-Essential Heavy Metals from Modern Glazed Ceramic Crockeries Imported into Qatar from China, India and Spain A New Approach of Solving the Nonlinear Equations in Biofiltration of Methane in a Closed Biofilter Determination of Some Trace Heavy Metals (Pb, Cr, Cd, Mn and Zn) Levels in Iron Ores from Mines in Wollega (Ethiopia) Using Atomic Absorption Spectrometric Technique
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1